已知命題p:不等式|x-1|+|x+2|>m的解集為R;命題q:f(x)=log(5-2m)x為減函數(shù).則p是q成立的( 。
A、充分不必要條件B、必要不充分條件C、充要條件D、既不充分也不必要條件
分析:本題考查的知識點(diǎn)是充要條件的定義,根據(jù)根據(jù)“誰小誰充分,誰大誰必要”的原則,我們可以求出命題p成立時(shí),m的取值范圍,與命題q 成立時(shí),m的取值范圍,然后比較兩個(gè)范圍的包含關(guān)系,即可得到結(jié)論.
解答:解:命題p:不等式|x-1|+|x+2|>m的解集為R
則m∈(-∞,3)
命題q:f(x)=log(5-2m)x為減函數(shù).
則m∈(-∞,2)∪(2,
5
2

∵(-∞,2)∪(2,
5
2
)?(-∞,3)
根據(jù)“誰小誰充分,誰大誰必要”的原則,
p是q成立的必要不充分條件
故選B
點(diǎn)評:判斷充要條件的方法是:①若p?q為真命題且q?p為假命題,則命題p是命題q的充分不必要條件;②若p?q為假命題且q?p為真命題,則命題p是命題q的必要不充分條件;③若p?q為真命題且q?p為真命題,則命題p是命題q的充要條件;④若p?q為假命題且q?p為假命題,則命題p是命題q的即不充分也不必要條件.⑤判斷命題p與命題q所表示的范圍,再根據(jù)“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

21、已知命題p:不等式|x|+|x+1|>m的解集為R,命題q:函數(shù)f(x)=x2-2mx+1在(2,+∞)上是增函數(shù).若p∨q為真命題,p∧q為假命題,則實(shí)數(shù)m的取值范圍是
{m|1≤m≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:不等式|x-1|>m-1的解集為R,命題q:f(x)=(5-2m)x是(-∞,+∞)上的增函數(shù),若p或q為真命題,p且q為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題P:不等式ex>m的解集為R,命題q:f(x)=
2-m
x
在區(qū)間(0,+∞)上是減函數(shù),若命題“p或q”為真,命題“p且q”為假,則實(shí)數(shù)m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:不等式|x|+|x-1|>a的解集為R,命題q:f(x)=-(5-2a)x是減函數(shù),若p,q中有且僅有一個(gè)為真命題,則實(shí)數(shù)a的取值范圍是
[1,2)
[1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:不等式-2x+m>1,x∈[-1,0]恒成立;命題q:函數(shù)y=log2[4x2+4(m-2)x+1]的定義域?yàn)椋?∞,+∞),若“p∨q”為真,“p∧q”為假,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案