【題目】設(shè)全集U=R,已知集合A={x||x﹣a|≤1},B={x|(4﹣x)(x﹣1)≤0}.
(1)若a=4,求A∪B;
(2)若A∩B=A,求實數(shù)a的取值范圍.
【答案】
(1)解:當(dāng)a=4,A={x||x﹣a|≤1}
={x|﹣1+a≤x≤1+a}
={x|3≤x≤5},
B={x|(4﹣x)(x﹣1)≤0}
={x|x≥4或x≤1},
∴A∪B={x|x≥3或x≤1}
(2)解:A={x||x﹣a|≤1}
={x|﹣1+a≤x≤1+a},
B={x|(4﹣x)(x﹣1)≤0}
={x|x≥4或x≤1},
若A∩B=A,則AB,
∴﹣1+a≥4或1+a≤1,
∴a≥5或a≤0
【解析】(1)當(dāng)a=4,A={x||x﹣a|≤1}={x|﹣1+a≤x≤1+a}={x|3≤x≤5},B={x|(4﹣x)(x﹣1)≤0}={x|x≥4或x≤1},由此能求出A∪B.(2)A={x||x﹣a|≤1}={x|﹣1+a≤x≤1+a},B={x|(4﹣x)(x﹣1)≤0}={x|x≥4或x≤1},若A∩B=A,則AB,由此能求出實數(shù)a的取值范圍.
【考點精析】通過靈活運用集合的并集運算,掌握并集的性質(zhì):(1)AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A;(2)若A∪B=B,則AB,反之也成立即可以解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小王于年初用50萬元購買一輛大貨車,第一年因繳納各種費用需支出6萬元,從第二年起,每年都比上一年增加支出2萬元,假定該車每年的運輸收入均為25萬元.小王在該車運輸累計收入超過總支出后,考慮將大貨車作為二手車出售,若該車在第x年年底出售,其銷售價格為(25-x)萬元(國家規(guī)定大貨車的報廢年限為10年).
(1)大貨車運輸?shù)降趲啄昴甑,該車運輸累計收入超過總支出?
(2)在第幾年年底將大貨車出售,能使小王獲得的年平均利潤最大?(利潤=累計收入+銷售收入-總支出)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= ﹣
(1)證明函數(shù)f(x)是奇函數(shù);
(2)證明函數(shù)f(x)在(﹣∞,+∞)內(nèi)是增函數(shù);
(3)求函數(shù)f(x)在[1,2]上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點,點是直線上的動點,過作直線, ,線段的垂直平分線與交于點.
(1)求點的軌跡的方程;
(2)若點是直線上兩個不同的點,且的內(nèi)切圓方程為,直線的斜率為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,圓C的參數(shù)方程為 (θ為參數(shù)),直線l經(jīng)過點P(1,1),傾斜角 ,
(1)寫出直線l的參數(shù)方程;
(2)設(shè)l與圓C相交于兩點A,B,求點P到A,B兩點的距離之積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《太陽的后裔》是第一部中國與韓國同步播出的韓劇,愛奇藝視頻網(wǎng)站在某大學(xué)隨機調(diào)查了110名學(xué)生,得到如表列聯(lián)表:由表中數(shù)據(jù)算得K2的觀測值k≈7.8,因此得到的正確結(jié)論是( )
女 | 男 | 總計 | |
喜歡 | 40 | 20 | 60 |
不喜歡 | 20 | 30 | 50 |
總計 | 60 | 50 | 110 |
(K2≥k) | 0.100 | 0.010 | 0.001 |
k | 2.706 | 6.635 | 10.828 |
附表:K2= .
A.有99%以上的把握認為“喜歡該電視劇與性別無關(guān)”
B.有99%以上的把握認為“喜歡該電視劇與性別有關(guān)”
C.在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別無關(guān)”
D.在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別有關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在上且以3為周期的奇函數(shù),當(dāng)時, ,則函數(shù)在區(qū)間上的零點個數(shù)是( )
A. 3 B. 5 C. 7 D. 9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}{n=1,2,3…,2015},圓C1:x2+y2﹣4x﹣4y=0,圓C2:x2+y2﹣2anx﹣2a2006﹣ny=0,若圓C2平分圓C1的周長,則{an}的所有項的和為( )
A. 2014 B. 2015 C. 4028 D. 4030
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)滿足:f(﹣x)+f(x)=ex+e﹣x , 則稱f(x)為“e函數(shù)”.
(1)試判斷f(x)=ex+x3是否為“e函數(shù)”,并說明理由;
(2)若f(x)為“e函數(shù)”且 ,
(ⅰ)求證:f(x)的零點在 上;
(ⅱ)求證:對任意a>0,存在λ>0,使f(x)<0在(0,λa)上恒成立.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com