【題目】已知函數(shù) ,且函數(shù)y=f(x)圖象的一個(gè)對稱中心到最近的對稱軸的距離為 . (Ⅰ)求ω的值及f(x)的對稱柚方程;
(Ⅱ)在△ABC,中,角A,B,C的對邊分別為a,b,c.若 ,求b的值.

【答案】解:函數(shù) 化簡可得:
=
=
=
;
(Ⅰ)由函數(shù)y=f(x)圖象的一個(gè)對稱中心到最近的對稱軸的距離為 ,
,解得ω=1.
當(dāng)ω=1時(shí),
,求得
即f(x)的對稱軸方程為
(Ⅱ)由(Ⅰ)知 ,即
,
解得:A=kπ或 (k∈Z)
又∵A∈(0,π),
∴A=
由sinC= ,C∈(0,π),
∴C ,
故得
∴sinB=sin(A+C)=sinAcosC+cosAsinC=
∵a=
由正弦定理得:b=
【解析】(Ⅰ)利用二倍角和兩角和與差以及輔助角公式基本公式將函數(shù)化為y=Asin(ωx+φ)的形式,根據(jù)對稱中心到最近的對稱軸的距離為 ,即 ,可得T,即求ω及f(x)的對稱柚方程.(Ⅱ)由 ,利用正弦定理得求b的值即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)樣本數(shù)據(jù)x1 , x2 , …,x10的均值和方差分別為1和4,若yi=xi+a(a為非零常數(shù),i=1,2,…,10),則y1 , y2 , …,y10的均值和方差分別為(
A.1+a,4
B.1+a,4+a
C.1,4
D.1,4+a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖的算法程序框圖,輸出的結(jié)果是(
A.211﹣2
B.211﹣1
C.210﹣2
D.210﹣1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列{an}的前n項(xiàng)和為Sn , 且6Sn=3n+1+a(n∈N+
(1)求a的值及數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=(1﹣an)log3(an2an+1),求 的前n項(xiàng)和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】斐波拉契數(shù)列0,1,1,2,3,5,8…是數(shù)學(xué)史上一個(gè)著名的數(shù)列,定義如下:F(0)=0,F(xiàn)(1)=1,F(xiàn)(n)=F(n﹣1)+F(n﹣2)(n≥2,n∈N).某同學(xué)設(shè)計(jì)了一個(gè)求解斐波拉契數(shù)列前15項(xiàng)和的程序框圖,那么在空白矩形和判斷框內(nèi)應(yīng)分別填入的詞句是( )

A.c=a,i≤14
B.b=c,i≤14
C.c=a,i≤15
D.b=c,i≤15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 ,若以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρcos2θ+4cosθ=ρ(ρ≥0,0≤θ≤2π).
(Ⅰ)當(dāng) 時(shí),求直線l的普通方程;
(Ⅱ)若直線l與曲線C相交A,B兩點(diǎn).求證: 是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: + =1(a>b>0)經(jīng)過點(diǎn)P(2, ),離心率e= ,直線l的漸近線為x=4.
(1)求橢圓C的方程;
(2)經(jīng)過橢圓右焦點(diǎn)D的任一直線(不經(jīng)過點(diǎn)P)與橢圓交于兩點(diǎn)A,B,設(shè)直線l相交于點(diǎn)M,記PA,PB,PM的斜率分別為k1 , k2 , k3 , 問是否存在常數(shù)λ,使得k1+k2=λk3?若存在,求出λ的值若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的是(
A.?x0∈R,sinx0+cosx0=
B.?x≥0且x∈R,2x>x2
C.已知a,b為實(shí)數(shù),則a>2,b>2是ab>4的充分條件
D.已知a,b為實(shí)數(shù),則a+b=0的充要條件是 =﹣1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1 (a>b>0)的短軸長為2,過上頂點(diǎn)E和右焦點(diǎn)F的直線與圓M:x2+y2﹣4x﹣2y+4=0相切.
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線l過點(diǎn)(1,0),且與橢圓C交于點(diǎn)A,B,則在x軸上是否存在一點(diǎn)T(t,0)(t≠0),使得不論直線l的斜率如何變化,總有∠OTA=∠OTB (其中O為坐標(biāo)原點(diǎn)),若存在,求出 t的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案