精英家教網 > 高中數學 > 題目詳情

已知函數f(x)=4x-k(x2+2clnx)(c,k∈R)有一個極值點是1.
(I)討論函數f(x)的單調性;
(II)當c>1時,記f(x)的極大值為M(c),極小值為N(c),對于t∈R,問函數數學公式是否存在零點?若存在,請確定零點個數;若不存在,請說明理由.

解:(I)由已知中k≠0
∵f(x)=4x-k(x2+2clnx)(c>1,k∈R)
∴f′(x)=4-k(2x+)=
∵函數f(x)=有一個極值點是1.
∴f′(1)=0
∴c=
令f′(x)=0,即-2kx2-2ck+4x=0
∵此方程的一個根為1,
∴另一個根為c
∵c>1,即0<k<1
∴函數f(x)在(1,c)上為增函數,在(0,1),(c,+∞)上為減函數
(II)由(I)知f(x)在x=c時取極大值,在x=1時取極小值
∴M=f(c)=4c-k(c2+2clnc),N=f(1)=4-k,其中


令g(c)=c2-1-2clnc,則g′(c)=2c-(2lnc+2)=2(c-1-lnc)
再令h(c)=c-1-lnc,則h′(c)=1-=
∵c>1,∴h′(c)>0
∴函數h(c)在(1,+∞)上為增函數
∴h(c)>h(1)=0
∴g′(c)>0,
∴函數g(c)在(1,+∞)上為增函數
∴g(c)>g(1)=0
>0

∴函數不存在零點.
分析:(I)由已知中函數f(x)=4x-k(x2+2clnx)(c>1,k∈R)有一個極值點是1.根據函數在某點取得極值的條件,可得1是導函數f′(x)=4-k(2x+)的一個根,由此求出函數的另一個極值點后,即可討論得出函數的單調性.
(II)由(I)的結論,我們可得f(x)在x=c時取極大值,在x=1時取極小值,即=f(c)=4c-k(c2+2clnc),N=f(1)=4-k,構造函數利用導數研究函數的單調性,利用函數的單調性可以比較 的大小,從而得出函數是否存在零點.
點評:本題考查的知識點是函數在某點取得極值的條件,用導數研究函數的單調性,其中根據已知中函數的解析式,求出函數的導函數的解析式,并分析出函數的單調性及極值點等信息,是解答本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=-
4+
1
x2
,數列{an},點Pn(an,-
1
an+1
)在曲線y=f(x)上(n∈N+),且a1=1,an>0.
( I)求數列{an}的通項公式;
( II)數列{bn}的前n項和為Tn且滿足bn=an2an+12,求Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=-
4-x2
在區(qū)間M上的反函數是其本身,則M可以是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=4+ax-1(a>0且a≠1)的圖象恒過定點P,則P點的坐標是
(1,5)
(1,5)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
4-x
的定義域為A,B={x|2x+3≥1}.
(1)求A∩B;
(2)設全集U=R,求?U(A∩B);
(3)若Q={x|2m-1≤x≤m+1},P=A∩B,Q⊆P,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
(4-
a
2
)x+4,  x≤6
ax-5,     x>6
(a>0,a≠1),數列{an}滿足an=f(n)(n∈N*),且{an}是單調遞增數列,則實數a的取值范圍( 。

查看答案和解析>>

同步練習冊答案