設a為實數(shù),記函數(shù)的最大值為
(1)設t=,求t的取值范圍,并把f(x)表示為t的函數(shù)m(t) ;
(2)求 ;
(3)試求滿足的所有實數(shù)a.

(1),;(2)=(3).

解析試題分析:(1)根據(jù)的取值范圍求出的范圍,再將用含的式子表示;(2)由題意知即為函數(shù),的最大值,因為對稱軸含有參數(shù),所以要討論處理;(3)根據(jù)(2)問得出的,由在對應區(qū)域上討論解答即可.
試題解析:(1)∵,∴要使有意義,必須,即.
,且 ①   
的取值范圍是,                                          2分
由①得:,
.                 4分
(2)由題意知即為函數(shù),的最大值,
∵直線是拋物線的對稱軸,                       5分
∴可分以下幾種情況進行討論:
①當時,函數(shù),的圖象是開口向上的拋物線的一段,
上單調(diào)遞增,故;
②當時,,有=2;
③當時,,函數(shù),的圖象是開口向下的拋物線的一段,
時,,
時,,
時,.     9分
綜上所述,有=                        10分
(3)當時,;

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

機床廠今年年初用98萬元購進一臺數(shù)控機床,并立即投入生產(chǎn)使用,計劃第一年維修、保養(yǎng)費用12萬元,從第二年開始,每年所需維修、保養(yǎng)費用比上一年增加4萬元,該機床使用后,每年的總收入為50萬元,設使用x年后數(shù)控機床的盈利額為y萬元.
(Ⅰ)寫出y與x之間的函數(shù)關系式;
(Ⅱ)從第幾年開始,該機床開始盈利(盈利額為正值);
(Ⅲ)使用若干年后,對機床的處理方案有兩種:
(1)當年平均盈利額達到最大值時,以30萬元價格處理該機床;
(2)當盈利額達到最大值時,以12萬元價格處理該機床.
請你研究一下哪種方案處理較為合理?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

定義在上的函數(shù),當時,,且對任意的 ,有
(Ⅰ)求證:
(Ⅱ)求證:對任意的,恒有
(Ⅲ)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在半徑為、圓心角為的扇形的弧上任取一點,作扇形的內(nèi)接矩形,使點上,點上,設矩形的面積為

(Ⅰ)按下列要求求出函數(shù)關系式:
①設,將表示成的函數(shù)關系式;
②設,將表示成的函數(shù)關系式;
(Ⅱ)請你選用(1)中的一個函數(shù)關系式,求出的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知某公司生產(chǎn)品牌服裝的年固定成本是10萬元,每生產(chǎn)千件,須另投入2 7萬元,設該公司年內(nèi)共生產(chǎn)該品牌服裝x千件并全部銷售完,每千件的銷售收入為R(x)萬元,且 
(1)寫出年利潤W(萬元)關于年產(chǎn)量x(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該公司在這一品牌服裝的生產(chǎn)中所獲利潤最大?(注:年利潤=年銷售收入 年總成本)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)某沿海地區(qū)養(yǎng)殖的一種特色海鮮上市時間僅能持續(xù)5個月,預測上市初期和后期會因供應不足使價格呈持續(xù)上漲態(tài)勢,而中期又將出現(xiàn)供大于求,使價格連續(xù)下跌.現(xiàn)有三種價格模擬函數(shù):①;②;③.(以上三式中均為常數(shù),且
(1)為準確研究其價格走勢,應選哪種價格模擬函數(shù)(不必說明理由)
(2)若,,求出所選函數(shù)的解析式(注:函數(shù)定義域是.其中表示8月1日,表示9月1日,…,以此類推);
(3)在(2)的條件下研究下面課題:為保證養(yǎng)殖戶的經(jīng)濟效益,當?shù)卣媱澰趦r格下跌期間積極拓寬外銷,請你預測該海鮮將在哪幾個月份內(nèi)價格下跌.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)是常數(shù))在區(qū)間上有
(1)求的值;
(2)若時,求的取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)在一個周期內(nèi)的部分對應值如下表:















(I)求的解析式;
(II)設函數(shù),,求的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某公司擬投資開發(fā)某種新能源產(chǎn)品,估計能獲得10萬元至1000萬元的投資收益.為加快開發(fā)進程,特制定了產(chǎn)品研制的獎勵方案:獎金(萬元)隨投資收益(萬元)的增加而增加,但獎金總數(shù)不超過9萬元,同時獎金不超過投資收益的20%. 
現(xiàn)給出兩個獎勵模型:①;②.
試分析這兩個函數(shù)模型是否符合公司要求?

查看答案和解析>>

同步練習冊答案