精英家教網 > 高中數學 > 題目詳情

【題目】若橢圓上有一動點到橢圓的兩焦點的距離之和等于,到直線的最大距離為.

(Ⅰ)求橢圓的方程;

(Ⅱ)若過點的直線與橢圓交于不同兩點,為坐標原點)且,求實數的取值范圍.

【答案】(1) .

(2) (-2,)∪(,2).

【解析】分析(I)由橢圓的定義及到直線的最大距離為列方程可求得的值,從而可求得橢圓的方程;(II)設橢圓的方程,代入橢圓的方程,由取得的取值范圍,利用韋達定理及向量的坐標運算求得點坐標,代入橢圓方程,求得,由,即可求得的取值范圍.

詳解(I)由已知得,∴, ,

所以橢圓的方程為:.

(II)l的斜率必須存在,即設l:

聯(lián)立,消去y整理得,

,,由韋達定理得,,

,設P(x,y),

,

而P在橢圓C上,∴,

(*),又∵,

解之,得,∴,

再將(*)式化為 ,將代入

,即,

則t的取值范圍是(-2,)∪(,2)

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x﹣m(x+1)ln(x+1)(m>0)的最大值是0,函數g(x)=x﹣a(x2+2x)(a∈R). (Ⅰ)求實數m的值;
(Ⅱ)若當x≥0時,不等式f(x)≥g(x)恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數 在(t,10﹣t2)上有最大值,則實數t的取值范圍為(
A.
B.
C.[﹣2,1)
D.(﹣2,1)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系內,已知是以點為圓心的圓上的一點,折疊該圓兩次使點分別與圓上不相同的兩點(異于點)重合,兩次的折痕方程分別為,若圓上存在點,使得,其中點、,則的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】a,b為空間中兩條互相垂直的直線,等腰直角三角形ABC的直角邊AC所在直線與a,b都垂直,斜邊AB以直線AC為旋轉軸旋轉,有下列結論:
①當直線AB與a成60°角時,AB與b成30°角;
②當直線AB與a成60°角時,AB與b成60°角;
③直線AB與a所成角的最小值為45°;
④直線AB與a所成角的最小值為60°;
其中正確的是(填寫所有正確結論的編號)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱錐A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,點E、F(E與A、D不重合)分別在棱AD,BD上,且EF⊥AD. 求證:(Ⅰ)EF∥平面ABC;
(Ⅱ)AD⊥AC.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知關于的方程在區(qū)間上有兩個實數根,,且,則實數的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數

(1)請指出函數的定義域、周期性和奇偶性;(不必證明)

(2)請以正弦函數的性質為依據,并運用函數的單調性定義證明:在區(qū)間上單調遞減.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,角A、B、C所對的邊分別為a、b、c,若=
(1)求角A;
(2)若f(x)=sinx+cos(x+A),求函數f(x)的單調遞增區(qū)間.

查看答案和解析>>

同步練習冊答案