【題目】已知等差數(shù)列{an},公差為2,的前n項(xiàng)和為Sn , 且a1 , S2 , S4成等比數(shù)列,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn= (n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn

【答案】
(1)解:由a1,S2,S4成等比數(shù)列得

化簡得 ,又d=2,解得a1=1,

故數(shù)列{an}的通項(xiàng)公式


(2)解:∵ ∴由(1)得 ,

=


【解析】(1))由a1 , S2 , S4成等比數(shù)列得 .化簡解得a1 , 再利用等差數(shù)列的通項(xiàng)公式即可得出;(2)利用“裂項(xiàng)求和”即可得出.
【考點(diǎn)精析】通過靈活運(yùn)用等比數(shù)列的通項(xiàng)公式(及其變式)和數(shù)列的前n項(xiàng)和,掌握通項(xiàng)公式:;數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù) 的圖象與x軸有公共點(diǎn),則m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的中心在原點(diǎn)O,短軸長為 ,左焦點(diǎn)為F(﹣c,0)(c>0),直線 與x軸交于點(diǎn)A,且 ,過點(diǎn)A的直線與橢圓相交于P,Q兩點(diǎn).

(1)求橢圓的方程.
(2)若 ,求直線PQ的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x),x∈R,對于任意的x,y∈R,f(x+y)=f(x)+f(y),若f(1)= ,則f(﹣2016)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體ABCD﹣A1B1C1D1中,直線DC1與平面A1BD所成角的余弦值是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=asinx﹣bcosx(a,b為常數(shù),a≠0,x∈R)在x= 處取得最大值,則函數(shù)y=f(x+ )是(
A.奇函數(shù)且它的圖象關(guān)于點(diǎn)(π,0)對稱
B.偶函數(shù)且它的圖象關(guān)于點(diǎn)( ,0)對稱
C.奇函數(shù)且它的圖象關(guān)于點(diǎn)( ,0)對稱
D.偶函數(shù)且它的圖象關(guān)于點(diǎn)(π,0)對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=2sin(2x+ ),g(x)=mcos(2x﹣ )﹣2m+3(m>0),若對任意x1∈[0, ],存在x2∈[0, ],使得g(x1)=f(x2)成立,則實(shí)數(shù)m的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)定義域?yàn)閇0,+∞),當(dāng)x∈[0,1]時(shí),f(x)=sinπx,當(dāng)x∈[n,n+1]時(shí),f(x)= ,其中n∈N,若函數(shù)f(x)的圖象與直線y=b有且僅有2016個交點(diǎn),則b的取值范圍是(
A.(0,1)
B.(
C.( ,
D.( ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(1,0), =(1,1), =(﹣1,1). (Ⅰ)λ為何值時(shí), 垂直?
(Ⅱ)若(m +n )∥ ,求 的值.

查看答案和解析>>

同步練習(xí)冊答案