在直三棱柱ABC-A1B1C1中,D,E分別是棱BC,CC1上的點(diǎn)(點(diǎn)D異于B、C)且AD⊥DE.
(1)求證:面ADE⊥面BCC1B1
(2)若△ABC為正三角形,AB=2,AA1=4,E為CC1的中點(diǎn),求二面角E-AD-C的正切值.
(1)證明:∵三棱柱ABC-A1B1C1是直三棱柱,
∴CC1⊥平面ABC,
∵AD?平面ABC,
∴AD⊥CC1
又∵AD⊥DE,DE、CC1是平面BCC1B1內(nèi)的相交直線(xiàn)
∴AD⊥平面BCC1B1,
∵AD?平面ADE
∴平面ADE⊥平面BCC1B1;
(2)由(1)知,AD⊥BC,
∵CC1⊥平面ABC,∴DE⊥AD,
∴∠EDC是二面角E-AD-C的平面角
∵△ABC為正三角形,AB=2,AA1=4,E為CC1的中點(diǎn),
∴CD=1,CE=2
∴tan∠EDC=
EC
DC
=2.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在正方體ABCD-A1B1C1D1中,B1C與對(duì)角面DD1B1B所成角的大小是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD=AD=2.
(1)求PC與平面PBD所成的角;
(2)在線(xiàn)段PB上是否存在一點(diǎn)E,使得PC⊥平面ADE?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

邊長(zhǎng)為a的菱形ABCD中銳角A=θ,現(xiàn)沿對(duì)角線(xiàn)BD折成60°的二面角,翻折后|AC|=
3
2
a,則銳角A是( 。
A.
π
12
B.
π
6
C.
π
3
D.
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

正方體ABCD-A1B1C1D1中二面角A1-BD-C1的余弦值為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四棱錐P-ABCD是底面邊長(zhǎng)為1的正方形,PD⊥BC,PD=1,PC=
2

(Ⅰ)求證:PD⊥面ABCD;
(Ⅱ)求二面角A-PB-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在直角坐標(biāo)系中,A(-2,3),B(3,-2)沿x軸把直角坐標(biāo)系折成90°的二面角,則此時(shí)線(xiàn)段AB的長(zhǎng)度為( 。
A.2
5
B.
38
C.5
2
D.4
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)正方體ABC-A1B1C1D1的棱長(zhǎng)為2,動(dòng)點(diǎn)E,F(xiàn)在棱A1B1上,動(dòng)點(diǎn)P、Q分別在棱AD、CD上,若EF=1,A1E=x,DQ=y,DP=z(x,y,z>0),則下列結(jié)論中錯(cuò)誤的是( 。
A.EF平面DPQ
B.二面角P-EF-Q所成角的最大值為
π
4
C.三棱錐P-EFQ的體積與y的變化有關(guān),與x、z的變化無(wú)關(guān)
D.異面直線(xiàn)EQ和AD1所成角的大小與x、y的變化無(wú)關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,底面ABCD是矩形,知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)證明:AD⊥平面PAB;
(2)求異面直線(xiàn)PC與AD所成的角的余弦值;
(3)求二面角P-BD-A的大小余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案