精英家教網 > 高中數學 > 題目詳情
已知定義在實數集上的函數f(x)滿足xf(x)為偶函數,f(x+2)=-f(x),(x∈R) 且當1≤x≤3時,f(x)=(2-x)3
(1)求-1≤x≤0時,函數f(x)的解析式.
(2)求f(2008)、f(2008.5)的值.
分析:(1)先由xf(x)為偶函數得到f(x)是奇函數,設-1≤x≤0,則1≤x+2≤2,代入f(x)=-(x+2)2即可求出x∈[-1,0]的解析式;
(2)根據f(x+2)=-f(x)得到f(x)=-f(x-2),從而f(x+2)=f(x-2)得到周期T=4,即可求出f(2008)、f(2008.5)的值.
解答:解:(1)由xf(x)為偶函數可知:f(x)是奇函數.設-1≤x≤0,
則1≤x+2≤2
又f(x+2)=-f(x)可得:f(x)=x3
(2)f(x+2)=-f(x)⇒f(x)=-f(x-2)
得:f(x+2)=f(x-2)知T=4
得:f(2008)=f(0)=0,f(2008.5)=f(0.5)=-f(-0.5)=
1
8
點評:本題主要考查了函數的奇偶性、周期性以及函數的解析式的求解等有關基礎知識,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

18、已知定義在實數集上的函數y=f(x)滿足條件:對于任意的實數x,y,f(x+y)=f(x)+f(y),且x>0時,f(x)>0,f(1)=2,
(1)求f(0);f(2);
(2)證明:f(x)是奇函數;
(3)證明:f(x)是增函數.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在實數集上的函數y=f(x)滿足條件:對任意的x,y∈R,f(x+y)=f(x)+f(y).
(1)求f(0)的值,
(2)求證:f(x)是奇函數,
(3)舉出一個符合條件的函數y=f(x).

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在實數集上的函數fn(x)=xn,(x∈N*),其導函數記為fn′(x),且滿足fn′[ax1+(1-a)x2]  =
f2(x2)-f2(x1x2-x1
,其中a,x1,x2為常數,x1≠x2.設函數g(x)=f1(x)+mf2(x)-lnf3(x),(m∈R且m≠0).
(Ⅰ)求實數a的值;
(Ⅱ)若函數g(x)無極值點,其導函數g′(x)有零點,求m的值;
(Ⅲ)求函數g(x)在x∈[0,a]的圖象上任一點處的切線斜率k的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在實數集上的偶函數y=f(x)在區(qū)間(0,+∞)上是增函數,那么y1=f(
π
3
)
,y2=f(3x2+1)y3=f(log2
1
4
)
之間的大小關系為( 。

查看答案和解析>>

同步練習冊答案