已知橢圓:,
(1)若橢圓的長軸長為4,離心率為,求橢圓的標準方程;
(2)在(1)的條件下,設(shè)過定點的直線與橢圓交于不同的兩點,且為銳角(為坐標原點),求直線的斜率的取值范圍;
(3)過原點任意作兩條互相垂直的直線與橢圓:相交于四點,設(shè)原點到四邊形的一邊距離為,試求時滿足的條件.
(1);(2);(3).
解析試題分析:(1)利用已知條件找出解出、即得;(2)設(shè)直線方程,聯(lián)立方程組消去得到關(guān)于的方程,由求出的范圍;(3)設(shè)直線的方程為聯(lián)立方程組消去到關(guān)于的方程,利用、韋達定理、點到直線的距離公式求解.
試題解析:(1)依題意,,解得,故橢圓的方程為.
(2)如圖,依題意,直線的斜率必存在,
設(shè)直線的方程為,,,
聯(lián)立方程組,消去整理得,
由韋達定理,,,
,
因為直線與橢圓相交,則,
即,解得或,
當為銳角時,向量,則,
即,解得,
故當為銳角時,.
如圖,
依題意,直線的斜率存在,設(shè)其方程為,,,由于,
,即,又,
①
聯(lián)立方程組,消去得,
由韋達定理得,,代入①得
,
令點到直線的距離為1,則,即,
,
整理得.
考點:橢圓的性質(zhì),直線與橢圓的位置關(guān)系.
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓:的左、右焦點和短軸的兩個端點構(gòu)成邊長為2的正方形.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點的直線與橢圓相交于,兩點.點,記直線的斜率分別為,當最大時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖已知橢圓的中點在原點,焦點在x軸上,長軸是短軸的2倍且過點,平行于的直線在y軸的截距為,且交橢圓與兩點,
(1)求橢圓的方程;(2)求的取值范圍;(3)求證:直線、與x軸圍成一個等腰三角形,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C的中心在坐標原點,焦點在x軸上,左、右焦點分別為F1,F(xiàn)2,且|F1F2|=2,點P(1,)在橢圓C上.
(I)求橢圓C的方程;
(II)如圖,動直線:與橢圓C有且僅有一個公共點,點M,N是直線l上的兩點,且,,四邊形面積S的求最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知分別是橢圓的左、右焦點,橢圓的離心率.
(I)求橢圓的方程;(II)已知直線與橢圓有且只有一個公共點,且與直線相交于點.求證:以線段為直徑的圓恒過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系中,動點到兩點,的距離之和等于4,設(shè)點的軌跡為曲線C,直線過點且與曲線C交于A,B兩點.
(Ⅰ)求曲線C的軌跡方程;
(Ⅱ)是否存在△AOB面積的最大值,若存在,求出△AOB的面積;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
拋物線M: 的準線過橢圓N: 的左焦點,以坐標原點為圓心,以t(t>0)為半徑的圓分別與拋物線M在第一象限的部分以及y軸的正半軸相交于點A與點B,直線AB與x軸相交于點C.
(1)求拋物線M的方程.
(2)設(shè)點A的橫坐標為x1,點C的橫坐標為x2,曲線M上點D的橫坐標為x1+2,求直線CD的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓方程為,過右焦點斜率為1的直線到原點的距離為.
(1)求橢圓方程.
(2)已知為橢圓的左右兩個頂點,為橢圓在第一象限內(nèi)的一點,為過點且垂直軸的直線,點為直線與直線的交點,點為以為直徑的圓與直線的一個交點,求證:三點共線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com