已知圓C的半徑為
,圓心在直線
上,且被直線
截得的弦長為
,求圓C的方程
或
.
試題分析:因為所求圓的圓心C在直線
上,所以設(shè)圓心為
,
所以可設(shè)圓的方程為
,
因為圓被直線
截得的弦長為
,則圓心
到直線
的距離
,即
,解得
.
所以圓的方程為
或
.
點評:(1)要求圓的方程,只需確定圓心和半徑。(2)當(dāng)直線與圓相交時,通常用到弦心距、半徑、弦長的一半構(gòu)成的直角三角形來求解。
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
圓
上到直線4x-3y=2的距離為
的點數(shù)共有__________ 個。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分10分)已知直線
經(jīng)過點
,且和圓
相交,截得的弦長為4
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題12分)已知:以點C (t,
)(t∈R , t ≠ 0)為圓心的圓與
軸交于點O, A,
與y軸交于點O, B,其中O為原點.
(1)求證:△OAB的面積為定值;
(2)設(shè)直線y = –2x+4與圓C交于點M, N,若
,求圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
圓
和圓
的位置關(guān)系為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(理)(本題滿分14分)如圖,已知直線
,直線
以及
上一點
.
(Ⅰ)求圓心M在
上且與直線
相切于點
的圓⊙M的方程.
(Ⅱ)在(Ⅰ)的條件下;若直線
分別與直線
、圓⊙依次相交于
A、
B、
C三點,
求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
平面直角坐標(biāo)系
中,直線
截以原點
為圓心的圓所得的弦長為
(1)求圓
的方程;
(2)若直線
與圓
切于第一象限,且與坐標(biāo)軸交于
,當(dāng)
長最小時,求直線
的方程;
(3)問是否存在斜率為
的直線
,使
被圓
截得的弦為
,以
為直徑的圓經(jīng)過原點.若存在,寫出直線
的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分) 已知圓
過兩點
,且圓心
在
上.
(1)求圓
的方程;
(2)設(shè)
是直線
上的動點,
是圓
的兩條切線,
為切點,求四邊形
面積的最小值.
查看答案和解析>>