如圖所示,已知E、F、G、H分別是空間四邊形ABCD邊AB、BC、CD、DA的中點.

(1)用向量法證明E、F、G、H四點共面;

(2)用向量法證明BD∥平面EFGH;

(3)設M是EG和FH的交點,求證:對空間任一點O,有=).

解析:(1)連結(jié)BG,則=+=+(+)=++=+,

由共面向量定理的推論知E、F、G、H四點共面.

(2)∵=-=-

=(-)=,

∴EH∥BD.又EHGH,BD面EFGH,

∴BD∥平面EFGH.

(3)連結(jié)OM、OA、OB、OC、OD、OE、OG,

由(2)知=.同理, =.

=,EHFG.

∴EG、FH交于一點M且被M平分.

=(+)=+

=(+)]+(+)]=(+++).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,已知D為△ABC的BC邊上一點,⊙O1經(jīng)過點B,D,交AB于另一點E,⊙O2經(jīng)過點C,D,交
AC于另一點F,⊙O1與⊙O2交于點G.
(1)求證:∠EAG=∠EFG;
(2)若⊙O2的半徑為5,圓心O2到直線AC的距離為3,AC=10,AG切⊙O2于G,求線段AG的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,已知D是面積為1的△ABC的邊AB的中點,E是邊AC上任一點,連接DE,F(xiàn)是線段DE上一點,連接BF,設,
DF
DE
=λ1
AE
AC
=λ2
,且λ1+λ2=
1
2
,記△BDF的面積為S=f (λ1,λ2,),則S的最大值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,已知圓C:(x+1)2+y2=8,定點A(1,0),M為圓上一動點,點P在AM上,點N在CM上,且滿足AM=2AP,NP⊥AM,點N的軌跡為曲線E.
(1)求曲線E的方程;
(2)若過定點F(0,2)的直線l交曲線E于不同的兩點G、H(點G在點F、H之間),且滿足FG=
1
2
FH
,求直線l的方程;
(3)設曲線E的左右焦點為F1,F(xiàn)2,過F1的直線交曲線于Q,S兩點,過F2的直線交曲線于R,T兩點,且QS⊥RT,垂足為W;
(ⅰ)設W(x0,y0),證明:
x
2
0
2
+
y
2
0
<1
;
(ⅱ)求四邊形QRST的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,已知ABCD-A1B1C1D1是棱長為3的正方體,點E在AA1上,點F在CC1上,G在BB1上,且AE=FC1=B1G=1,H是B1C1的中點.
(1)求證:E、B、F、D1四點共面
(2)求證:平面A1GH∥平面BED1F.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,已知E是正四面體A―BCD的棱AC的中點,F(xiàn)在AD上,且,則△BEF在△ABD面上的射影是   

查看答案和解析>>

同步練習冊答案