【題目】已知橢圓的左頂點為A,右焦點為F,過點F的直線交橢圓于B,C兩點.
(1)求該橢圓的離心率;
(2)設(shè)直線AB和AC分別與直線x=4交于點M,N,問:x軸上是否存在定點P使得MP⊥NP?若存在,求出點P的坐標(biāo);若不存在,說明理由.
【答案】(1)(2)存在定點P(1,0)或P(7,0),
【解析】試題分析:(1)由橢圓方程分別求出a,b,c的值,求出離心率;(2)假設(shè)在x軸上存在點p,設(shè)直線BC的方程為,B(x1,y1),C(x2,y2),
聯(lián)立直線和橢圓方程,利用韋達(dá)定理求出的表達(dá)式,求出M,N的坐標(biāo),由MP⊥NP,求出P點的坐標(biāo),即得出定點。
試題解析: (1)由橢圓方程可得a=2,b=,從而橢圓的半焦距c==1.
所以橢圓的離心率為e==.
(2)依題意,直線BC的斜率不為0,
設(shè)其方程為x=ty+1.
將其代入+=1,整理得(4+3t2)y2+6ty-9=0.
設(shè)B(x1,y1),C(x2,y2),
所以y1+y2=,y1y2=.
易知直線AB的方程是y= (x+2),
從而可得M(4,),同理可得N(4,).
假設(shè)x軸上存在定點P(p,0)使得MP⊥NP,則有·=0.
所以(p-4)2+=0.
將x1=ty1+1,x2=ty2+1代入上式,整理得
(p-4)2+=0,
所以(p-4)2+=0,
即(p-4)2-9=0,解得p=1或p=7.
所以x軸上存在定點P(1,0)或P(7,0),使得MP⊥NP.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在(﹣∞,0)∪(0,+∞)上的奇函數(shù)f(x)滿足f(2)=0,且在(﹣∞,0)上是增函數(shù);又定義行列式=a1a4﹣a2a3; 函數(shù)g(θ)=(其中0≤θ≤).
(1)證明:函數(shù)f(x)在(0,+∞)上也是增函數(shù);
(2)若函數(shù)g(θ)的最大值為4,求m的值;
(3)若記集合M={m|任意的0≤θ≤ , g(θ)>0},N={m|任意的0≤θ≤ , f[g(θ)]<0},求M∩N.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x),當(dāng)x,y∈R時,恒有f(x+y)=f(x)+f(y).當(dāng)x>0時,f(x)>0
(1)求證:f(x)是奇函數(shù);
(2)若f(1)= ,試求f(x)在區(qū)間[﹣2,6]上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)若是函數(shù)的極值點,1為函數(shù)的一個零點,求函數(shù)在上的最小值.
(2)當(dāng)時,函數(shù)與軸在內(nèi)有兩個不同的交點,求的取值范圍.(其中是自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列{an}的前n項和為Sn,且S4=4S2,a2n=2an+1.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}的前n項和為Tn,且,令cn=b2n(n∈N*),求數(shù)列{cn}的前n項和Rn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項和為,.
(1)求數(shù)列的通項公式;
(2)設(shè),=,記數(shù)列的前項和.若對, 恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù), ).以原點為極點,以軸正半軸為極軸,與直角坐標(biāo)系取相同的長度單位,建立極坐標(biāo)系.設(shè)曲線的極坐標(biāo)方程為.
(Ⅰ)設(shè)為曲線上任意一點,求的取值范圍;
(Ⅱ)若直線與曲線交于兩點, ,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,有兩個獨立的轉(zhuǎn)盤()、().兩個圖中三個扇形區(qū)域的圓心角分別為、、.用這兩個轉(zhuǎn)盤進行玩游戲,規(guī)則是:依次隨機轉(zhuǎn)動兩個轉(zhuǎn)盤再隨機停下(指針固定不會動,當(dāng)指針恰好落在分界線時,則這次結(jié)果無效,重新開始),記轉(zhuǎn)盤()指針?biāo)鶎Φ臄?shù)為,轉(zhuǎn)盤()指針?biāo)鶎Φ臄?shù)為,(、),求下列概率:
(1);
(2).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com