【題目】天壇公園是明、清兩代皇帝“祭天”“祈谷”的場(chǎng)所.天壇公園中的圜丘臺(tái)共有三層(如圖1所示),上層壇的中心是一塊呈圓形的大理石板,從中心向外圍以扇面形石(如圖2所示).上層壇從第一環(huán)至第九環(huán)共有九環(huán),中層壇從第十環(huán)至第十八環(huán)共有九環(huán),下層壇從第十九環(huán)至第二十七環(huán)共有九環(huán);第一環(huán)的扇面形石有9塊,從第二環(huán)起,每環(huán)的扇面形石塊數(shù)比前一環(huán)多9塊,則第二十七環(huán)的扇面形石塊數(shù)是______;上、中、下三層壇所有的扇面形石塊數(shù)是_______.
【答案】
【解析】
由題意可知每環(huán)的扇面形石塊數(shù)是一個(gè)以9為首項(xiàng),9為公差的等差數(shù)列,據(jù)此確定第二十七環(huán)的扇面形石塊數(shù)和上、中、下三層壇所有的扇面形石塊數(shù)即可.
第一環(huán)的扇面形石有9塊,從第二環(huán)起,每環(huán)的扇面形石塊數(shù)比前一環(huán)多9塊,
則依題意得:每環(huán)的扇面形石塊數(shù)是一個(gè)以9為首項(xiàng),9為公差的等差數(shù)列,
所以,an=9+(n-1)×9=9n,
所以,a27=9×27=243,
前27項(xiàng)和為:=3402.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為,過點(diǎn),斜率為1的直線與拋物線交于點(diǎn),,且.
(1)求拋物線的方程;
(2)過點(diǎn)作直線交拋物線于不同于的兩點(diǎn)、,若直線,分別交直線于兩點(diǎn),求取最小值時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三家企業(yè)產(chǎn)品的成本分別為10000,12000,15000,其成本構(gòu)成如下圖所示,則關(guān)于這三家企業(yè)下列說法錯(cuò)誤的是( )
A.成本最大的企業(yè)是丙企業(yè)B.費(fèi)用支出最高的企業(yè)是丙企業(yè)
C.支付工資最少的企業(yè)是乙企業(yè)D.材料成本最高的企業(yè)是丙企業(yè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)三角形數(shù)表按如下方式構(gòu)成(如圖:其中項(xiàng)數(shù)):第一行是以4為首項(xiàng),4為公差的等差數(shù)列,從第二行起,每一個(gè)數(shù)是其肩上兩個(gè)數(shù)的和,例如:;為數(shù)表中第行的第個(gè)數(shù).
…
…
…
……
(1)求第2行和第3行的通項(xiàng)公式和;
(2)證明:數(shù)表中除最后2行外每一行的數(shù)都依次成等差數(shù)列,并求關(guān)于的表達(dá)式;
(3)若,,試求一個(gè)等比數(shù)列,使得,且對(duì)于任意的,均存在實(shí)數(shù),當(dāng)時(shí),都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,平面平面.四邊形為正方形,四邊形為梯形,且,,,.
(1)求證:;
(2)求直線與平面所成角的正弦值;
(3)線段上是否存在點(diǎn),使得直線平面若存在,求的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校需要從甲、乙兩名學(xué)生中選一人參加數(shù)學(xué)競(jìng)賽,抽取了近期兩人次數(shù)學(xué)考試的成績(jī),統(tǒng)計(jì)結(jié)果如下表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
甲的成績(jī)(分) | |||||
乙的成績(jī)(分) |
(1)若從甲、乙兩人中選出一人參加數(shù)學(xué)競(jìng)賽,你認(rèn)為選誰(shuí)合適?請(qǐng)說明理由.
(2)若數(shù)學(xué)競(jìng)賽分初賽和復(fù)賽,在初賽中有兩種答題方案:
方案一:每人從道備選題中任意抽出道,若答對(duì),則可參加復(fù)賽,否則被淘汰.
方案二:每人從道備選題中任意抽出道,若至少答對(duì)其中道,則可參加復(fù)賽,否則被潤(rùn)汰.
已知學(xué)生甲、乙都只會(huì)道備選題中的道,那么你推薦的選手選擇哪種答題方條進(jìn)人復(fù)賽的可能性更大?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)為橢圓上任意一點(diǎn),直線與圓交于兩點(diǎn),點(diǎn)為橢圓的左焦點(diǎn).
(Ⅰ)求橢圓的離心率及左焦點(diǎn)的坐標(biāo);
(Ⅱ)求證:直線與橢圓相切;
(Ⅲ)判斷是否為定值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確命題的序號(hào)是( 。
①函數(shù)f(x)在定義域R內(nèi)可導(dǎo),“f′(1)=0”是“函數(shù)f(x)在x=1處取極值”的充分不必要條件;
②函數(shù)f(x)=x3ax在[1,2]上單調(diào)遞增,則a≥﹣4
③在一次射箭比賽中,甲、乙兩名射箭手各射箭一次.設(shè)命題p:“甲射中十環(huán)”,命題q:“乙射中十環(huán)”,則命題“至少有一名射箭手沒有射中十環(huán)”可表示為(¬p)∨(¬q);
④若橢圓左、右焦點(diǎn)分別為F1,F2,垂直于x軸的直線交橢圓于A,B兩點(diǎn),當(dāng)直線過右焦點(diǎn)時(shí),△ABF1的周長(zhǎng)取最大值
A.①③④B.②③④C.②③D.①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1) 解關(guān)于x的不等式;
(2) 若函數(shù)的圖像恒在函數(shù)圖像的上方,求m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com