【題目】在如圖所示的幾何體中,四邊形CDEF為正方形,四邊形ABCD為梯形,,,,平面ABCD.
求BE與平面EAC所成角的正弦值;
線段BE上是否存在點(diǎn)M,使平面平面DFM?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1);(2)見(jiàn)解析
【解析】
以C為原點(diǎn),CD為x軸,CB為y軸,CF為z軸,建立空間直角坐標(biāo)系,求出平面EAC的法向量,利用向量法能求出BE與平面EAC所成角的正弦值.
設(shè)線段BE上存在點(diǎn)b,,,,使平面平面DFM,求出平面DMF的法向量和平面EAC的法向量,利用向量法求出線段BE上不存在點(diǎn)M,使平面平面DFM.
四邊形CDEF為正方形,四邊形ABCD為梯形,,,平面ABCD.
以C為原點(diǎn),CD為x軸,CB為y軸,
CF為z軸,建立空間直角坐標(biāo)系,
設(shè),則1,,
0,,1,,
0,,0,,
,1,,
0,,
設(shè)平面EAC的法向量y,,
則,取,
得,
設(shè)BE與平面EAC所成角為,
則.
與平面EAC所成角的正弦值為.
線段BE上不存在點(diǎn)M,使平面平面DFM.
理由如下:
設(shè)線段BE上存在點(diǎn)b,,,,使平面平面DFM,
則,,,0,,
設(shè)平面DMF的法向量y,,
則,取,得,
平面平面DFM,平面EAC的法向量,
,解得,
線段BE上不存在點(diǎn)M,使平面平面DFM.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系xOy中,已知橢圓C:1(a>b>0)的離心率為,左右焦點(diǎn)分別是F1,F2,以F1為圓心,以3為半徑的圓與以F2為圓心,以1為半徑的圓相交,且交點(diǎn)在橢圓C上.
(1)求橢圓C的方程;
(2)設(shè)橢圓E:1,P為橢圓C上任意一點(diǎn),過(guò)點(diǎn)P的直線y=kx+m交橢圓E于A,B兩點(diǎn).射線PO交橢圓E于點(diǎn)Q.
(i)求的值,
(ii)求△ABQ面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面,為線段上一點(diǎn)不在端點(diǎn).
(1)當(dāng)為中點(diǎn)時(shí),,求證:面
(2)當(dāng)為中點(diǎn)時(shí),是否存在,使得直線與平面所成角的正弦值為,若存在求出M的坐標(biāo),若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】公安部交管局修改后的酒后違法駕駛機(jī)動(dòng)車的行為分成兩個(gè)檔次:“酒后駕車”和“醉酒駕車”,其判斷標(biāo)準(zhǔn)是駕駛?cè)藛T每100毫升血液中的酒精含量X毫克,當(dāng)20≤X<80時(shí),認(rèn)定為酒后駕車;當(dāng)X≥80時(shí),認(rèn)定為醉酒駕車,重慶市公安局交通管理部門(mén)在對(duì)G42高速路我市路段的一次隨機(jī)攔查行動(dòng)中,依法檢測(cè)了200輛機(jī)動(dòng)車駕駛員的每100毫升血液中的酒精含量,酒精含量X(單位:毫克)的統(tǒng)計(jì)結(jié)果如下表:
X | [0,20) | [20,40) | [40,60) | [60,80) | [80,100) | [100,+∞) |
人數(shù) | t | 1 | 1 | 1 | 1 | 1 |
依據(jù)上述材料回答下列問(wèn)題:
(1)求t的值;
(2)從酒后違法駕車的司機(jī)中隨機(jī)抽取2人,求這2人中含有醉酒駕車司機(jī)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直三棱柱中,點(diǎn)是棱的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)若,,在棱上是否存在點(diǎn),使二面角的大小為,若存在,求出的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)經(jīng)銷鮮花產(chǎn)品的微店,為保障售出的百合花品質(zhì),每天從云南鮮花基地空運(yùn)固定數(shù)量的百合花,如有剩余則免費(fèi)分贈(zèng)給第二天購(gòu)花顧客,如果不足,則從本地鮮花供應(yīng)商處進(jìn)貨.今年四月前10天,微店百合花的售價(jià)為每支2元,云南空運(yùn)來(lái)的百合花每支進(jìn)價(jià)1.6元,本地供應(yīng)商處百合花每支進(jìn)價(jià)1.8元,微店這10天的訂單中百合花的需求量(單位:支)依次為:251,255,231,243,263,241,265,255,244,252.
(Ⅰ)求今年四月前10天訂單中百合花需求量的平均數(shù)和眾數(shù),并完成頻率分布直方圖;
(Ⅱ)預(yù)計(jì)四月的后20天,訂單中百合花需求量的頻率分布與四月前10天相同,百合花進(jìn)貨價(jià)格與售價(jià)均不變,請(qǐng)根據(jù)(Ⅰ)中頻率分布直方圖判斷(同一組中的需求量數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表,位于各區(qū)間的頻率代替位于該區(qū)間的概率),微店每天從云南固定空運(yùn)250支,還是255支百合花,四月后20天百合花銷售總利潤(rùn)會(huì)更大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】a,b為空間兩條互相垂直的直線,等腰直角三角形的直角邊所在直線與a,b都垂直,斜邊以為旋轉(zhuǎn)軸選擇,有下列結(jié)論:
①當(dāng)直線與a成60°角時(shí),與b成30°角;
②當(dāng)直線與a成60°角時(shí),與b成60°角;
③直線與a所成角的最小值為45°;
④直線與a所成角的最大值為60°;
其中正確的是_______.(填寫(xiě)所以正確結(jié)論的編號(hào)).
A.①③B.①④C.②③D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,且經(jīng)過(guò)點(diǎn)
(1)求橢圓的方程;
(2)是否存在經(jīng)過(guò)點(diǎn)的直線,它與橢圓相交于兩個(gè)不同點(diǎn),且滿足為坐標(biāo)原點(diǎn))關(guān)系的點(diǎn)也在橢圓上,如果存在,求出直線的方程;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓C:1(a>b>0)的右焦點(diǎn)為F,A(2,0)是橢圓的右頂點(diǎn),過(guò)F且垂直于x軸的直線交橢圓于P,Q兩點(diǎn),且|PQ|=3.
(1)求橢圓的方程;
(2)過(guò)點(diǎn)A的直線l與橢圓交于另一點(diǎn)B,垂直于l的直線l′與直線l交于點(diǎn)M,與y軸交于點(diǎn)N,若FB⊥FN且|MO|=|MA|,求直線l的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com