【題目】已知函數(shù) .
(Ⅰ)求f(x)在點(diǎn)(0,f(0))處的切線方程;
(Ⅱ)證明:當(dāng)f(x1)=f(x2)(x1≠x2)時(shí),x1+x2<0.
【答案】(Ⅰ)解:∵ ,∴f′(x)= ,
∴f′(0)=0,f(0)=1
∴f(x)在點(diǎn)(0,f(0))處的切線方程為y=1;
(Ⅱ)證明:當(dāng)x<1時(shí),由于 >0,ex>0,得到f(x)>0;
同理,當(dāng)x>1時(shí),f(x)<0.
當(dāng)f(x1)=f(x2)(x1≠x2)時(shí),不妨設(shè)x1<x2 .
當(dāng)x<0時(shí),f′(x)>0;當(dāng)x>0時(shí),f′(x)<0.
∴函數(shù)f(x)的單調(diào)遞增區(qū)間為(﹣∞,0),單調(diào)遞減區(qū)間為(0,+∞).
可知:x1∈(﹣∞,0),x2∈(0,1).
下面證明:x∈(0,1),f(x)<f(﹣x),即證 < .
此不等式等價(jià)于(1﹣x)ex﹣ <0.
令g(x)=(1﹣x)ex﹣ ,則g′(x)=﹣xe﹣x(e2x﹣1).
當(dāng)x∈(0,1)時(shí),g′(x)<0,g(x)單調(diào)遞減,∴g(x)<g(0)=0.
即(1﹣x)ex﹣ <0.
∴x∈(0,1),f(x)<f(﹣x).
而x2∈(0,1),∴f(x2)<f(﹣x2).
從而,f(x1)<f(﹣x2).
由于x1 , ﹣x2∈(﹣∞,0),f(x)在(﹣∞,0)上單調(diào)遞增,
∴x1<﹣x2 , 即x1+x2<0
【解析】(Ⅰ)利用導(dǎo)數(shù)的運(yùn)算法則求出f′(x),求出切線斜率,即可求f(x)在點(diǎn)(0,f(0))處的切線方程;(Ⅱ)當(dāng)f(x1)=f(x2)(x1≠x2)時(shí),不妨設(shè)x1<x2 . 由(Ⅰ)可知:x1∈(﹣∞,0),x2∈(0,1).利用導(dǎo)數(shù)先證明:x∈(0,1),f(x)<f(﹣x).而x2∈(0,1),可得f(x2)<f(﹣x2).即f(x1)<f(﹣x2).由于x1 , ﹣x2∈(﹣∞,0),f(x)在(﹣∞,0)上單調(diào)遞增,因此得證.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,角A,B,C的對(duì)邊分別是a,b,c且滿足(2a﹣c)cosB=bcosC.
(1)求角B的大;
(2)若△ABC的面積為 ,求a+c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司設(shè)計(jì)如圖所示的環(huán)狀綠化景觀帶,該景觀帶的內(nèi)圈由兩條平行線段(圖中的AB,DC)和兩個(gè)半圓構(gòu)成,設(shè)AB=xm,且x≥80.
(1)若內(nèi)圈周長為400m,則x取何值時(shí),矩形ABCD的面積最大?
(2)若景觀帶的內(nèi)圈所圍成區(qū)域的面積為 m2 , 則x取何值時(shí),內(nèi)圈周長最小?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 的最小正周期為π.
(Ⅰ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若a,b,c分別為△ABC的三內(nèi)角A,B,C的對(duì)邊,角A是銳角,f(A)=0,a=1,b+c=2,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義在R上的奇函數(shù),且f(2)=0,當(dāng)x>0時(shí),有 恒成立,則不等式x2f(x)>0的解集為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個(gè)問題:“三百七十八里關(guān),初行健步不為難,次日腳疼減一半,六朝才得到其關(guān),要見次日行里數(shù),請(qǐng)公仔細(xì)算相還.”其大意為:“有一個(gè)人走了378里路,第一天健步行走,從第二天起腳疼每天走的路程為前一天的一半,走了6天后到達(dá)目的地,請(qǐng)問第二天走了?”根據(jù)此規(guī)律,求后3天一共走多少里( )
A.156里
B.84里
C.66里
D.42里
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=4sin (ω>0). (Ⅰ)若ω=3,求f(x)在區(qū)間 上的最小值;
(Ⅱ)若函數(shù)f(x)的圖象如圖所示,求ω的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】二分法是求方程近似解的一種方法,其原理是“一分為二、無限逼近”.執(zhí)行如圖所示的程序框圖,若輸入x1=1,x2=2,d=0.01則輸出n的值( )
A.6
B.7
C.8
D.9
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com