如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,AB∥DC,已知BD=2AD=2PD=8,AB=2DC=4.
(Ⅰ)設M是PC上一點,證明:平面MBD⊥平面PAD;
(Ⅱ)若M是PC的中點,求棱錐P-DMB的體積.
(Ⅰ)詳見解析;(Ⅱ).
【解析】
試題分析:(Ⅰ)要證明平面平面,只需證明一個平面過另一個平面的垂線,因為M是PC上一點,不確定,故證明平面,顯然易證;(Ⅱ)求棱錐P-DMB的體積,直接求,底面面積及高都不好求,但注意到棱錐P-DMB是棱錐P-DCB除去一個小棱錐M-DCB而得到,而這兩個棱錐的體積都容易求,值得注意的是,當一個幾何體的體積不好求時,可進行轉化成其它幾何體來求.
試題解析:(I)證明:在中,由于,所以.故。又平面平面平面,所以平面,又平面,故平面平面;
(II)過作于是的中點,,.
考點:本小題考查面面垂直的判定、線面垂直的判定,面面垂直的性質定理應用;,以及棱錐的體積公式,考查學生的化歸與轉化能力以及空間想象能力.
科目:高中數學 來源: 題型:
2 |
查看答案和解析>>
科目:高中數學 來源: 題型:
1 | 2 |
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com