在△ABC中,若a=2,b=2
2
,c=
6
+
2
,則A的度數(shù)為( 。
A、30°B、45°
C、60°D、75°
分析:根據題中的數(shù)據,利用余弦定理算出cosA=
b2+c2-a2
2bc
=
3
2
,結合A為三角形的內角,即可算出角A的度數(shù).
解答:解:∵在△ABC中,a=2,b=2
2
,c=
6
+
2
,
∴根據余弦定理,得
cosA=
b2+c2-a2
2bc
=
(2
2
)2+(
6
+
2
)2-22
2×2
2
×(
6
+
2
)
=
2
3
(
3
+1)
4(
3
+1)
=
3
2

又∵A是三角形的內角,
可得0°<A<180°,
∴A=30°.
故選:A
點評:本題已知三角形的三條邊的長度,求角A的大。乜疾榱死糜嘞叶ɡ斫馊切蔚闹R,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

給出命題:
①函數(shù)y=2sinx-cosx的值域是[-2,1];
②函數(shù)y=sinπxcosπx是周期為2的奇函數(shù);
x=-
3
4
π
是函數(shù)y=sin(x+
π
4
)
的一條對稱軸;
④若sin2α<0,cosα-sinα<0,則α一定為第二象限角;
⑤在△ABC中,若A>B則sinA>sinB.
其中正確命題的序號為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,若a=7,b=3,c=8,則其面積等于( 。
A、12
B、
21
2
C、28
D、6
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,若∠A=60°,∠B=45°,BC=
2
,則AC=
2
3
3
2
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題中,真命題的個數(shù)為( 。
(1)在△ABC中,若A>B,則sinA>sinB;
(2)已知
AB
=(3,4),
CD
=(-2,-1)
,則
AB
CD
上的投影為-2;
(3)已知p:?x∈R,cosx=1,q:?x∈R,x2-x+1>0,則“p∧¬q”為假命題;
(4)已知函數(shù)f(x)=sin(ωx+
π
6
)-2
(ω>0)的導函數(shù)的最大值為3,則函數(shù)f(x)的圖象關于x=
π
3
對稱.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α為銳角,且tanα=
2
-1
,函數(shù)f(x)=2xtan2α+sin(2α+
π
4
)
,數(shù)列{an}的首項a1=1,an+1=f(an).
(1)求函數(shù)f(x)的表達式;
(2)在△ABC中,若∠A=2α,∠C=
π
3
,BC=2,求△ABC的面積
(3)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

同步練習冊答案