如圖,設P是拋物線C1:x2=y上的動點.過點P做圓C2:x2+(y+3)2=1的兩條切線,交直線l:y=-3于A,B兩點。
(1)求C2的圓心M到拋物線C1準線的距離;
(2)是否存在點P,使線段AB被拋物線C1在點P處的切線平分?若存在,求出點P的坐標;若不存在,請說明理由。
解:(1)由題意可知,拋物線C1的準線方程為:
所以圓心M到拋物線C1準線的距離為;
(2)設點P的坐標為(x0,x02),拋物線C1在點P處的切線交直線l于點D
再設A,B,D的橫坐標分別為
過點P(x0,x02)的拋物線C1的切線方程為:  (1)
時,過點P(1,1)與圓C2的切線PA為:
可得
所以
設切線PA,PB的斜率為,則
   (2)
  (3)
分別代入(1),(2),(3),得

從而


同理
所以是方程的兩個不相等的根,從而
,
因為
所以,即
從而
進而得
綜上所述,存在點P滿足題意,點P的坐標為()。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,P是拋物線C:x2=2y上一點,F(xiàn)為拋物線的焦點,直線l過點P且與拋物線交于另一點Q,已知P(x1,y1),Q(x2,y2).
(1)若l經(jīng)過點F,求弦長|PQ|的最小值;
(2)設直線l:y=kx+b(k≠0,b≠0)與x軸交于點S,與y軸交于點T
①求證:
|ST|
|SP|
+
|ST|
|SQ|
=|b|(
1
y1
+
1
y2
)

②求
|ST|
|SP|
+
|ST|
|SQ|
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,斜率為1的直線過拋物線Ω:y2=2px(p>0)的焦點F,與拋物線交于兩點A,B,
(1)若|AB|=8,求拋物線Ω的方程;
(2)設C為拋物線弧AB上的動點(不包括A,B兩點),求△ABC的面積S的最大值;
(3)設P是拋物線Ω上異于A,B的任意一點,直線PA,PB分別交拋物線的準線于M,N兩點,證明M,N兩點的縱坐標之積為定值(僅與p有關)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本題滿分12分)

如圖,斜率為1的直線過拋物線的焦點F,與拋物線交于兩點A,B

   (1)若|AB|=8,求拋物線的方程;

   (2)設C為拋物線弧AB上的動點(不包括A,B兩點),求的面積S的最大值;

   (3)設P是拋物線上異于A,B的任意一點,直線PA,PB分別交拋物線的準線于M,N兩點,證明M,N兩點的縱坐標之積為定值(僅與p有關)

查看答案和解析>>

科目:高中數(shù)學 來源:山東省棗莊市2010屆高三年級調研考試數(shù)學(文科)試題 題型:解答題

(本題滿分12分)
如圖,斜率為1的直線過拋物線的焦點F,與拋物線交于兩點A,B。
(1)若|AB|=8,求拋物線的方程;
(2)設C為拋物線弧AB上的動點(不包括A,B兩點),求的面積S的最大值;
(3)設P是拋物線上異于A,B的任意一點,直線PA,PB分別交拋物線的準線于MN兩點,證明MN兩點的縱坐標之積為定值(僅與p有關)

查看答案和解析>>

科目:高中數(shù)學 來源:山東省棗莊市2010屆高三年級調研考試數(shù)學(文科)試題 題型:解答題

(本題滿分12分)

如圖,斜率為1的直線過拋物線的焦點F,與拋物線交于兩點A,B。

   (1)若|AB|=8,求拋物線的方程;

   (2)設C為拋物線弧AB上的動點(不包括A,B兩點),求的面積S的最大值;

   (3)設P是拋物線上異于AB的任意一點,直線PAPB分別交拋物線的準線于M,N兩點,證明MN兩點的縱坐標之積為定值(僅與p有關)

 

查看答案和解析>>

同步練習冊答案