已知函數(shù)f(x)=mx-
mx
-lnx
,若f(x)在其定義域內(nèi)是單調(diào)增函數(shù),則實數(shù)m的取值范圍是
 
分析:由題意可得,當(dāng)x>0時,f′(x)=m+
m
x2
-
1
x
≥0恒成立.即當(dāng)x>0時,m≥
1
x+
1
x
.而由基本不等式可得
1
x+
1
x
得最大值,可得m的范圍.
解答:解:由于函數(shù)f(x)=mx-
m
x
-lnx
,x>0,f(x)在其定義域內(nèi)是單調(diào)增函數(shù),
∴當(dāng)x>0時,f′(x)=m+
m
x2
-
1
x
≥0恒成立.
即當(dāng)x>0時,m≥
x
x2+1
=
1
x+
1
x

而由基本不等式可得
1
x+
1
x
1
2
,
1
x+
1
x
得最大值為
1
2
,故有m≥
1
2
,
故答案為:[
1
2
,+∞
).
點評:本題主要考查函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系,基本不等式的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=m•2x+t的圖象經(jīng)過點A(1,1)、B(2,3)及C(n,Sn),Sn為數(shù)列{an}的前n項和,n∈N*
(1)求Sn及an;
(2)若數(shù)列{cn}滿足cn=6nan-n,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=m(x+
1
x
)的圖象與h(x)=(x+
1
x
)+2的圖象關(guān)于點A(0,1)對稱.
(1)求m的值;
(2)若g(x)=f(x)+
a
4x
在(0,2]上是減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
m
n
,其中
m
=(sinωx+cosωx,
3
cosωx)
n
=(cosωx-sinωx,2sinωx),其中ω>0,若f(x)相鄰兩對稱軸間的距離不小于
π
2

(Ⅰ)求ω的取值范圍;
(Ⅱ)在△ABC中,a,b,c分別是角A,B,C的對邊,a=
3
,b+c=3,當(dāng)ω最大時,f(A)=1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下兩題任選一題:(若兩題都作,按第一題評分)
(一):在極坐標(biāo)系中,圓ρ=2cosθ的圓心到直線θ=
π
3
(ρ∈R)的距離
3
2
3
2
;
(二):已知函數(shù)f(x)=m-|x-2|,m∈R,當(dāng)不等式f(x+2)≥0的解集為[-2,2]時,實數(shù)m的值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集為[-1,1].
(1)求m的值;
(2)若a,b,c∈R+,且
1
a
+
1
2b
+
1
3c
=m,求Z=a+2b+3c的最小值.

查看答案和解析>>

同步練習(xí)冊答案