【題目】若f(x)=x2﹣x+b,且f(log2a)=b,log2[f(a)]=2(a≠1).
(1)求f(log2x)的最小值及對應(yīng)的x值;
(2)x取何值時(shí),f(log2x)>f(1)且log2[f(x)]<f(1)?

【答案】
(1)解:∵f(x)=x2﹣x+b,∴f(log2a)=log22a﹣log2a+b.

由已知有l(wèi)og22a﹣log2a+b=b,∴(log2a﹣1)log2a=0.

∵a≠1,∴l(xiāng)og2a=1.∴a=2.

又log2[f(a)]=2,∴f(a)=4.

∴a2﹣a+b=4,b=4﹣a2+a=2.

故f(x)=x2﹣x+2,從而f(log2x)=log22x﹣log2x+2=(log2x﹣ 2+

∴當(dāng)log2x= 即x= 時(shí),f(log2x)有最小值


(2)解:由題意 0<x<1
【解析】(1)把log2a代入f(x)中,解關(guān)于log2a的一元二次方程,求出a的值;再把f(a)的值代入log2[f(a)]=2中,求出b的值;從而確定函數(shù)f(x)的解析式;把log2x代入函數(shù)f(x)中,配方法求f(log2x)的最小值及對應(yīng)的x值;(2)利用對數(shù)恒等式和對數(shù)函數(shù)的單調(diào)性解不等式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求證:1是函數(shù)的極值點(diǎn);

(Ⅱ)設(shè)是函數(shù)的導(dǎo)函數(shù),求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時(shí),是否存在整數(shù),使不等式恒成立?若存在,求整數(shù)的值;若不存在,則說明理由;

(3)關(guān)于的方程上恰有兩個(gè)相異實(shí)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,連結(jié)棱長為2cm的正方體各面的中心得一個(gè)多面體容器,從頂點(diǎn)A處向該容器內(nèi)注水,注滿為止.已知頂點(diǎn)B到水面的高度h以每秒1cm勻速上升,記該容器內(nèi)水的體積V(cm3)與時(shí)間T(S)的函數(shù)關(guān)系是V(t),則函數(shù)V(t)的導(dǎo)函數(shù)y=V′(t)的圖象大致是(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U=R,集合 ,集合
(1)求A,B;
(2)求(RA)∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】綜合題。
(1)已知 在區(qū)間(m2﹣4m,2m﹣2)上能取得最大值,求實(shí)數(shù)m的取值范圍;
(2)設(shè)函數(shù)f(x)=ax﹣(k﹣1)ax(a>0且a≠1)是定義域?yàn)镽的奇函數(shù),若 ,且g(x)=a2x+a2x﹣2mf(x)在[1,+∞)上的最小值為﹣2,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),求的單調(diào)區(qū)間;

2)若上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校游園活動有這樣一個(gè)游戲:甲箱子里裝有3個(gè)白球,2個(gè)黑球,乙箱子里裝有1個(gè)白球,2個(gè)黑球,這些球除了顏色外完全相同,每次游戲從這兩個(gè)箱子里各隨機(jī)摸出2個(gè)球,若摸出的白球不少于2個(gè),則獲獎(jiǎng)(每次游戲結(jié)束后將球放回原箱).
(1)求在1次游戲中:
①摸出3個(gè)白球的概率.
②獲獎(jiǎng)的概率.
(2)求在3次游戲中獲獎(jiǎng)次數(shù)X的分布列.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={1,3,x},B={1,x2},設(shè)全集為U=A∪B,若B∪(UB)=A,求UB.

查看答案和解析>>

同步練習(xí)冊答案