已知
a
b
是夾角為120°的單位向量,則向量λ
a
+
b
a
-2
b
垂直的充要條件是實(shí)數(shù)λ的值為(  )
A、
5
4
B、
5
2
C、
3
4
D、
3
2
分析:首先根據(jù)已知求出
a
b
的值,再由兩向量垂直知(λ
a
+
b
)•(
a
- 2
b
)=0,展開(kāi)計(jì)算出λ的值.
解答:解:
根據(jù)已知|
a
|=|
b
|=1,
a
b
=-
1
2
,
∵向量λ
a
+
b
a
-2
b
垂直的充要條件是
a
+
b
)•(
a
-2
b
)=λ
a
2
+(1-2λ)
a
b
-2
b
2
=λ-
1
2
(1-2λ)-2=0

∴解得λ=
5
4

故選A.
點(diǎn)評(píng):要知道兩向量的數(shù)量積求法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
、
b
c
a
+
b
+
c
=
0
,|
a
|=3
,|
b
|=4
|
c
|=5
.設(shè)
a
b
的夾角為θ1,
b
c
的夾角為θ2,
a
c
的夾角為θ3,則它們的大小關(guān)系是
 
(按從大到。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中,正確命題的個(gè)數(shù)是( 。
①命題“?x∈R,使得x3+1<0”的否定是““?x∈R,都有x3+1>0”.
②雙曲線
x2
a2
-
y2
b2
=1(a>0,a>0)中,F(xiàn)為右焦點(diǎn),A為左頂點(diǎn),點(diǎn)B(0,b)且
AB
BF
=0,則此雙曲線的離心率為
5
+1
2

③在△ABC中,若角A、B、C的對(duì)邊為a、b、c,若cos2B+cosB+cos(A-C)=1,則a、c、b成等比數(shù)列.
④已知
a
,
b
是夾角為120°的單位向量,則向量λ
a
+
b
a
-2
b
垂直的充要條件是λ=
5
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知下列結(jié)論:
①已知a,b,c為實(shí)數(shù),則“b2=ac”是“a,b,c成等比數(shù)列”的充要條件; 
②滿足條件a=3,b=2
2
,A=450
的△ABC的個(gè)數(shù)為2;
③若兩向量
a
=(-2,1),
b
=(λ,-1)
的夾角為鈍角,則實(shí)數(shù)λ的取值范圍為(-
1
2
,+∞)
;
④若x為三角形中的最小內(nèi)角,則函數(shù)y=sinx+cosx的值域是(1,
2
]
; 
⑤某廠去年12月份產(chǎn)值是同年一月份產(chǎn)值的m倍,則該廠去年的月平均增長(zhǎng)率為
11m
-1
;
則其中正確結(jié)論的序號(hào)是
④⑤
④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知 
e1
、
e2
是夾角為60°的兩個(gè)單位向量,令向量
a
=2
e1
+
e2
,
b
=-3
e1
+2
e2
.(1)求向量
a
的模;(2)求向量
a
b
的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列命題中,正確命題的個(gè)數(shù)是( 。
①命題“?x∈R,使得x3+1<0”的否定是““?x∈R,都有x3+1>0”.
②雙曲線
x2
a2
-
y2
b2
=1(a>0,a>0)中,F(xiàn)為右焦點(diǎn),A為左頂點(diǎn),點(diǎn)B(0,b)且
AB
BF
=0,則此雙曲線的離心率為
5
+1
2

③在△ABC中,若角A、B、C的對(duì)邊為a、b、c,若cos2B+cosB+cos(A-C)=1,則a、c、b成等比數(shù)列.
④已知
a
,
b
是夾角為120°的單位向量,則向量λ
a
+
b
a
-2
b
垂直的充要條件是λ=
5
4
A.1 個(gè)B.2 個(gè)C.3 個(gè)D.4 個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案