已知函數(shù),。
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若的圖象恰有兩個交點,求實數(shù)的取值范圍。

(1),在
(2)

解析試題分析:解:(1)       1
                   2   







0



 


       6   
(2)由(1)得       7


          9
                10


          13
考點:函數(shù)與方程,函數(shù)的單調(diào)性
點評:解決的關鍵是的對于導數(shù)的符號與函數(shù)單調(diào)性關系,以及圖像的交點問題轉(zhuǎn)化為方程根的問題來處理屬于基礎題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知定義域為的函數(shù)是奇函數(shù).
(1)求的值;
(2)利用定義判斷函數(shù)的單調(diào)性;
(3)若對任意,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)若處取得極值,求的值;
(2)求的單調(diào)區(qū)間;
(3)若,函數(shù),若對于,總存在使得,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

若存在實常數(shù),使得函數(shù)對其定義域上的任意實數(shù)分別滿足:,則稱直線的“隔離直線”.已知,為自然對數(shù)的底數(shù)).
(1)求的極值;
(2)函數(shù)是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)若,函數(shù)是R上的奇函數(shù),當,(i)求實數(shù)
的值;(ii)當時,求的解析式;
(2)若方程的兩根中,一根屬于區(qū)間,另一根屬于區(qū)間,求實數(shù)的取 值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知是R上的奇函數(shù),且當時,,求的解析式。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)的圖象過點P(0,2),且在點M(-1,f(-1))處的切線方程為.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),在時取得極值.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)若時,恒成立,求實數(shù)m的取值范圍;
(Ⅲ)若,是否存在實數(shù)b,使得方程在區(qū)間上恰有兩個相異實數(shù)根,若存在,求出b的范圍,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)求函數(shù)上的最大值和最小值.

查看答案和解析>>

同步練習冊答案