(本小題滿分15分)
已知定點A(0,1),B(0,-1),C(1,0).動點P滿足:
.
(1)求動點P的軌跡方程,并說明方程表示的曲線類型;
(2)當
時,求
的最大、最小值.
(1)設動點坐標為
,則
,
,
.因為
,所以
.
.
若
,則方程為
,表示過點(1,0)且平行于y軸的直線.
若
,則方程化為
.表示以
為圓心,以
為半徑的圓.
(2)當
時,方程化為
,
因為
,所以
.
又
,所以
.
因為
,所以令
,
則
.
所以
的最大值為
,
最小值為
.
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:填空題
已知拋物線的參數(shù)方程為
(t為參數(shù)),其中p>0,焦點為F,準線為
. 過拋物線上一點M作
的垂線,垂足為E. 若|EF|=|MF|,點M的橫坐標是3,則p = ______.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)在平面直角坐標系xOy中,已知定點A(-2,0)、B(2,0),M是動點,且直線MA與直線MB的斜率之積為
,設動點M的軌跡為曲線C.
(I)求曲線C的方程;
(II)過定點T(-1,0)的動直線
與曲線C交于P,Q兩點,若
,證明:
為定值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(21) (本小題滿分15分)
直線
分拋物線
與
軸所圍成圖形為面積相等的兩個部分,求
的值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
:
的左焦點
,若橢圓上存在一點
,滿足以橢圓短軸為直徑的圓與線段
相切于線段
的中點
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)已知兩點
及橢圓
:
,過點
作斜率為
的直線
交橢圓
于
兩點,設線段
的中點為
,連結(jié)
,試問當
為何值時,直線
過橢圓
的頂點?
(Ⅲ) 過坐標原點
的直線交橢圓
:
于
、
兩點,其中
在第一象限,過
作
軸的垂線,垂足為
,連結(jié)
并延長交橢圓
于
,求證:
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分14分)
(文)如圖,|AB
|=2,O為AB中點,直線
過B且垂直于AB,過A的動直線與
交于點C,點M在線
段AC上,滿足=.
(I)求點M的軌跡方程;
(II)若過B點且斜率為- 的直線與軌跡M交于點P,點Q(t,0)是x軸上任意一點,求當ΔBPQ為銳角三角形時t的取值范圍。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
,拋物線
,點
是
上的動點,過點
作拋物線
的切線
,交橢圓
于
兩點,
(1)當
的斜率是
時,求
;
(2)設拋物線
的切線方程為
,當
是銳角時,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
曲線C:
與
軸的交點關(guān)于原點的對稱點稱為“望點”,以“望點”為圓心,凡是與曲線C有公共點的圓,皆稱之為“望圓”,則當a=1,b=1時,所有的“望圓”中,面積最小的“望圓”的面積為
.
查看答案和解析>>