(本小題滿分15分)
已知定點A(0,1),B(0,-1),C(1,0).動點P滿足:.
(1)求動點P的軌跡方程,并說明方程表示的曲線類型;
(2)當時,求的最大、最小值.

(1)設動點坐標為,則,,.因為,所以

,則方程為,表示過點(1,0)且平行于y軸的直線.
,則方程化為.表示以為圓心,以 為半徑的圓.
(2)當時,方程化為
因為,所以
,所以
因為,所以令,

所以的最大值為,
最小值為
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:填空題

已知拋物線的參數(shù)方程為(t為參數(shù)),其中p>0,焦點為F,準線為. 過拋物線上一點M作的垂線,垂足為E. 若|EF|=|MF|,點M的橫坐標是3,則p = ______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)在平面直角坐標系xOy中,已知定點A(-2,0)、B(2,0),M是動點,且直線MA與直線MB的斜率之積為,設動點M的軌跡為曲線C.
(I)求曲線C的方程;
(II)過定點T(-1,0)的動直線與曲線C交于P,Q兩點,若,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(21) (本小題滿分15分)
直線分拋物線軸所圍成圖形為面積相等的兩個部分,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

軸上,且,則點的坐標為      

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的左焦點,若橢圓上存在一點,滿足以橢圓短軸為直徑的圓與線段相切于線段的中點
(Ⅰ)求橢圓的方程;
(Ⅱ)已知兩點及橢圓:,過點作斜率為的直線交橢圓兩點,設線段的中點為,連結(jié),試問當為何值時,直線過橢圓的頂點?
(Ⅲ) 過坐標原點的直線交橢圓:兩點,其中在第一象限,過軸的垂線,垂足為,連結(jié)并延長交橢圓,求證:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)
(文)如圖,|AB|=2,O為AB中點,直線過B且垂直于AB,過A的動直線與交于點C,點M在線
段AC上,滿足=.
(I)求點M的軌跡方程;
(II)若過B點且斜率為- 的直線與軌跡M交于點P,點Q(t,0)是x軸上任意一點,求當ΔBPQ為銳角三角形時t的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓,拋物線,點上的動點,過點作拋物線的切線,交橢圓兩點,
(1)當的斜率是時,求;
(2)設拋物線的切線方程為,當是銳角時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

曲線C:軸的交點關(guān)于原點的對稱點稱為“望點”,以“望點”為圓心,凡是與曲線C有公共點的圓,皆稱之為“望圓”,則當a=1,b=1時,所有的“望圓”中,面積最小的“望圓”的面積為   

查看答案和解析>>

同步練習冊答案