對于函數(shù),若存在x0∈R,使方程成立,則稱x0的不動點,已知函數(shù)a≠0).
(1)當(dāng)時,求函數(shù)的不動點;
(2)若對任意實數(shù)b,函數(shù)恒有兩個相異的不動點,求a的取值范圍;
(1) 1為的不動點(2)

試題分析:解:(1)由題得:,因為為不動點,
因此有,即       2分
所以,即3和-1為的不動點。        5分
(2)因為恒有兩個不動點,
∴ 
即 (※)恒有兩個不等實數(shù)根,    8分
由題設(shè)恒成立,    10分
即對于任意b∈R,有恒成立,
所以有 ,    12分
 ∴         13分
點評:解題的關(guān)鍵是對新定義的理解,建立方程,將不動點的問題,轉(zhuǎn)化為結(jié)合一元二次方程中必然有兩個不等的實數(shù)根來求解參數(shù)的取值范圍。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

有一批運動服裝原價為每套80元,兩個商場均有銷售,為了吸引顧客,兩商場紛紛推出優(yōu)惠政策。甲商場的優(yōu)惠辦法是:買一套減4元,買兩套每套減8元,買三套每套減12元,......,依此類推,直到減到半價為止;乙商場的優(yōu)惠辦法是:一律7折。某單位欲為每位員工買一套運動服裝,問選擇哪個商場購買更省錢?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
我市有甲、乙兩家乒乓球俱樂部,兩家設(shè)備和服務(wù)都很好,但收費方式不同.甲家每張球臺每小時5元;乙家按月計費,一個月中30小時以內(nèi)(含30小時)每張球臺90元,超過30小時的部分每張球臺每小時2元.小張準(zhǔn)備下個月從這兩家中的一家租一張球臺開展活動,其活動時間不少于15小時,也不超過40小時.
(1)設(shè)在甲家租一張球臺開展活動小時的收費為,在乙家租一張球臺開展活動小時的收費為,試求。
(2)問:小張選擇哪家比較合算?說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

對實數(shù),定義運算“”: 設(shè)函數(shù),,若函數(shù)的圖像與軸恰有兩個公共點,則實數(shù)的取值范圍是(  )                                                                           
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

奇函數(shù)在區(qū)間上是減函數(shù),則在區(qū)間上是
A.增函數(shù),且最大值為B.減函數(shù),且最大值為
C.增函數(shù),且最大值為D.減函數(shù),且最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)某民營企業(yè)生產(chǎn)A、B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤y與投資額x成正比,其關(guān)系如圖1所示;B產(chǎn)品的利潤y與投資額x的算術(shù)平方根成正比,其關(guān)系如圖2所示(利潤與投資額的單位均為萬元). (1)分別將A、B兩種產(chǎn)品的利潤表示為投資額的函數(shù)關(guān)系式;(2)該企業(yè)已籌集到10萬元資金,并全部投入A、B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)已知函數(shù)
(1)若,求函數(shù)在點(0,)處的切線方程;
(2)是否存在實數(shù),使得的極大值為3.若存在,求出值;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(11分) 已知函數(shù)在定義域上為增函數(shù),且滿足
(1)求的值           (2)解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù),在上恒有,則實數(shù)的范圍是(    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案