精英家教網 > 高中數學 > 題目詳情

【題目】某市要對兩千多名出租車司機的年齡進行調查,現從中隨機抽出100名司機,已知抽到的司機年齡都在[20,45)歲之間,根據調查結果得出司機的年齡情況殘缺的頻率分布直方圖如圖所示,利用這個殘缺的頻率分布直方圖估計該市出租車司機年齡的中位數大約是歲.

【答案】33.6
【解析】解:根據頻率和為1,得; 年齡在25~30之間的頻率是
1﹣(0.01+0.07+0.06+0.02)×5=0.2;
∵0.01×5+0.2=0.25<0.5,
0.25+0.07×5=0.6>0.5,
令0.25+0.07x=0.5,
解得x≈3.6;
∴估計該市出租車司機年齡的中位數大約是30+3.6=33.6.
所以答案是:33.6.
【考點精析】本題主要考查了頻率分布直方圖的相關知識點,需要掌握頻率分布表和頻率分布直方圖,是對相同數據的兩種不同表達方式.用緊湊的表格改變數據的排列方式和構成形式,可展示數據的分布情況.通過作圖既可以從數據中提取信息,又可以利用圖形傳遞信息才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知橢圓 + =1(a>b>0)的離心率為 ,且過點( ).
(1)求橢圓方程;
(2)設不過原點O的直線l:y=kx+m(k≠0),與該橢圓交于P、Q兩點,直線OP、OQ的斜率依次為k1、k2 , 滿足4k=k1+k2 , 試問:當k變化時,m2是否為定值?若是,求出此定值,并證明你的結論;若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列函數中,在其定義域上既是奇函數又是增函數的是(
A.y=logax
B.y=x3+x
C.y=3x
D.y=﹣

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某服裝廠生產一種服裝,每件服裝的成本為40元,出廠單價定為60元.該廠為鼓勵銷售商訂購,決定當一次訂購量超過100件時,每多訂購一件,訂購的全部服裝的出廠單價就降低0.02元.根據市場調查,銷售商一次訂購量不會超過500件.
(1)設一次訂購量為x件,服裝的實際出廠單價為P元,寫出函數P=f(x)的表達式;
(2)當銷售商一次訂購多少件時,該服裝廠獲得的利潤最大,最大利潤是多少元? (服裝廠售出一件服裝的利潤=實際出廠單價﹣成本)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 ,若函數g(x)=f(x)﹣m有3個零點,則實數m的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】用數學歸納法證明1+2+3+…+n2= ,則當n=k+1時左端應在n=k的基礎上加上( )
A.k2+1
B.(k+1)2
C.
D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖是函數y=f(x)的導函數y=f′(x)的圖象,給出下列命題:
①﹣3是函數y=f(x)的極值點;
②﹣1是函數y=f(x)的最小值點;
③y=f(x)在x=0處切線的斜率小于零;
④y=f(x)在區(qū)間(﹣3,1)上單調遞增.
則正確命題的序號是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四邊形ABCD為矩形,DA⊥平面ABE,AE=EB=BC=2,BF⊥平面ACE于點F,且點F在CE上.
(1)求證:AE⊥BE;
(2)求三棱錐C﹣ADE的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x2+bx+c,其對稱軸為y軸(其中b,c為常數) (Ⅰ)求實數b的值;
(Ⅱ)記函數g(x)=f(x)﹣2,若函數g(x)有兩個不同的零點,求實數c的取值范圍;
(Ⅲ)求證:不等式f(c2+1)>f(c)對任意c∈R成立.

查看答案和解析>>

同步練習冊答案