數(shù)列{an}中,an+1是函數(shù)fn(x)=
1
3
x3-
1
2
(an+3)x2+(an+2)x(n∈N*)
的極小值點,且a1=3,an>0.
(1)求{an}的通項公式;
(2)記Sn為數(shù)列{an}的前n項和,試比較Sn與2n的大小關(guān)系.
分析:(1)利用函數(shù)的極值概念得到fn′(an+1)=an+12-(an+3)an+1+an+2=0,從而得到遞推關(guān)系式(an+1-1)(an+1-an-2)=0即an+1=an+2,從而可求{an}的通項公式;
(2)Sn=n2+2n,當(dāng)n=1,2,3,4,5時,n2+2n>2n,猜想n≥6時,n2+2n<2n,然后運用數(shù)學(xué)歸納法證明.
解答:解:(1)由題意得:fn′(an+1)=an+12-(an+3)an+1+an+2=0.…(1分)
∴(an+1-1)(an+1-an-2)=0,
∴an+1=an+2,
∵a1=3,∴an=2n+1.…(3分)
(2)Sn=
n(3+2n+1)
2
=n
2
+2n
b,當(dāng)n=1,2,3,4,5時,n2+2n>2n…(1分)
猜想n≥6時,n2+2n<2n…(1分)
下用數(shù)學(xué)歸納法證明
①當(dāng)n=6,左邊=62+2×6=48<右邊=26=64,成立.
②假設(shè)當(dāng)n=k(k≥6)時不等式成立,即k2+2k<2k,…(1分)
那么2k+1=2•2k>2(k2+2k)=k2+2k+k2+2k>k2+2k+3+2k=(k+1)2+2(k+1),
即當(dāng)n=k+1時,不等式也成立,…(2分)
由①、②可得:對于所有的n≥6(n∈N*)都有n2+2n<2n成立.…(1分)
點評:本題考查函數(shù)的極值,考查等差數(shù)列的判定與通項的求解,考查大小比較,考查數(shù)學(xué)歸納法的運用,確定數(shù)列的通項是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,如果對任意n∈N+都有
an+2-an+1an+1-an
=p(p為常數(shù)),則稱數(shù)列{an}為“等差比”數(shù)列,p叫數(shù)列{an}的“公差比”.現(xiàn)給出如下命題:
(1)等差比數(shù)列{an}的公差比p一定不為零;
(2)若數(shù)列{an}(n∈N+)是等比數(shù)列,則數(shù)列{an}一定是等差比數(shù)列;
(3)若等比數(shù)列{an}是等差比數(shù)列,則等比數(shù)列{an}的公比與公差比相等.
則正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•南京一模)已知函數(shù)f(x)=2+
1
x
.?dāng)?shù)列{an}中,a1=a,an+1=f(an)(n∈N*).當(dāng)a取不同的值時,得到不同的數(shù)列{an},如當(dāng)a=1時,得到無窮數(shù)列1,3,
7
3
17
7
,…;當(dāng)a=-
1
2
時,得到有窮數(shù)列-
1
2
,0.
(1)求a的值,使得a3=0;
(2)設(shè)數(shù)列{bn}滿足b1=-
1
2
,bn=f(bn+1)(n∈N*)
,求證:不論a取{bn}中的任何數(shù),都可以得到一個有窮數(shù)列{an};
(3)求a的取值范圍,使得當(dāng)n≥2時,都有
7
3
an
<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安徽模擬)數(shù)列{an}中,a1=
5
7
,an+1=2-
1
an
(n∈N*)
;數(shù)列{bn}滿足bn=
1
an-1
(n∈N*)

(I)求證:數(shù)列{bn}是等差數(shù)列,并求出{an}的通項公式an
(Ⅱ)求{an}中最大項與最小項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

關(guān)于數(shù)列有下列四個判斷:
①若a,b,c,d成等比數(shù)列,則a+b,b+c,c+d也成等比數(shù)列;
②若數(shù)列{an}是等比數(shù)列,則Sn,S2n-Sn,S3n-S2n…也成等比數(shù)列;
③若數(shù)列{an}既是等差數(shù)列也是等比數(shù)列,則{an}為常數(shù)列;
④數(shù)列{an}的前n項的和為Sn,且數(shù)學(xué)公式,則{an}為等差或等比數(shù)列;
⑤數(shù)列{an}為等差數(shù)列,且公差不為零,則數(shù)列{an}中不會有am=an(m≠n).
其中正確命題的序號是________.(請將正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,如果存在非零常數(shù)T使得an=an+T對于任意非零自然數(shù)n均成立,那么就稱數(shù)列{an}為周期數(shù)列,其中T叫做數(shù)列{an}的周期,已知數(shù)列{an}滿足an+1=|anan1|(n≥2,n∈N),如果a1=1,a2=a(a∈R,a≠0),當(dāng)數(shù)列{an}的周期最小時,該數(shù)列前2005項的和是                                                  

A.668                     B.669                    C.1336                  D.1337

查看答案和解析>>

同步練習(xí)冊答案