如圖,已知拋物線E:y2=x與圓M:(x-4)2+y2=r2(r>0) 相交于A、B、C、D四個點(diǎn),
(Ⅰ)求r的取值范圍;
(Ⅱ)當(dāng)四邊形ABCD的面積最大時,求對角線AC、BD的交點(diǎn)P的坐標(biāo).

解:(Ⅰ)將代入,并化簡得,①
E與M有四個交點(diǎn)的充要條件是方程①有兩個不等的正根x1、x2,
由此得,解得
又r>0,所以r的取值范圍是。
(Ⅱ)不妨設(shè)E與M的四個交點(diǎn)的坐標(biāo)為:A,
則直線AC、BD的方程分別為,
解得點(diǎn)P的坐標(biāo)為
設(shè),由及(Ⅰ)知,
由于四邊形ABCD為等腰梯形,因而其面積,
,
代入上式,并令f(t)=S2,
,
求導(dǎo)數(shù),,令f′(t)=0,解得(舍去),
當(dāng)0<t<時,f′(t)>0;t=時,f′(t)=0;時,F(xiàn)(t)<0,
故當(dāng)且僅當(dāng)t=時,f(t)有最大值,即四邊形ABCD的面積最大,故所求的點(diǎn)P的坐標(biāo)為(,0)。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線E:y2=x與圓M:(x-4)2+y2=r2(r>0)相交于A、B、C、D四個點(diǎn).
(Ⅰ)求r的取值范圍;
(Ⅱ)當(dāng)四邊形ABCD的面積最大時,求對角線AC、BD的交點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:高考真題 題型:解答題

如圖,已知拋物線E:y2=x與圓M:(x-4)2+y2=r2(r>0)相交于A、B、C、D四個點(diǎn).
(Ⅰ)求r的取值范圍;
(Ⅱ)當(dāng)四邊形ABCD的面積最大時,求對角線AC、BD的交點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年全國統(tǒng)一高考數(shù)學(xué)試卷Ⅰ(文科)(解析版) 題型:解答題

如圖,已知拋物線E:y2=x與圓M:(x-4)2+y2=r2(r>0)相交于A、B、C、D四個點(diǎn).
(Ⅰ)求r的取值范圍;
(Ⅱ)當(dāng)四邊形ABCD的面積最大時,求對角線AC、BD的交點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年全國統(tǒng)一高考數(shù)學(xué)試卷Ⅰ(理科)(解析版) 題型:解答題

如圖,已知拋物線E:y2=x與圓M:(x-4)2+y2=r2(r>0)相交于A、B、C、D四個點(diǎn).
(Ⅰ)求r的取值范圍;
(Ⅱ)當(dāng)四邊形ABCD的面積最大時,求對角線AC、BD的交點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案