【題目】設(shè)函數(shù),若方程在區(qū)間內(nèi)有個(gè)不同的實(shí)數(shù)解,則實(shí)數(shù)的取值范圍為_____

【答案】

【解析】

根據(jù)題意寫出,。根據(jù)函數(shù)的單調(diào)性,判斷出方程在區(qū)間內(nèi)有個(gè)不同的實(shí)數(shù)解等價(jià)于在在各有兩不同的實(shí)數(shù)解。再分區(qū)間討論即可得出答案。

由題意知,,

所以方程在區(qū)間內(nèi)有個(gè)不同的實(shí)數(shù)解等價(jià)于

在區(qū)間內(nèi)有個(gè)不同的實(shí)數(shù)解。

,

因?yàn)?/span>上單調(diào)遞減且,則

要使在區(qū)間內(nèi)有個(gè)不同的實(shí)數(shù)解,則在上有兩不同的實(shí)數(shù)解,在有兩不同的實(shí)數(shù)解。

1)當(dāng),,

所以單調(diào)遞減,在單調(diào)遞增。

, ,。

要使在區(qū)間上有兩不同的實(shí)數(shù)解,則:

。

2)當(dāng)時(shí),,令

有兩不同的實(shí)數(shù)解,

,

1)知,

所以單調(diào)遞減,在單調(diào)遞增,且,,

則在上存在唯一使得,即單調(diào)遞減,在單調(diào)遞增。

,,有兩不同的實(shí)數(shù)解,只需,

聯(lián)立

又①知代入②化簡得

又由上單調(diào)遞增,

所以

綜上所述:

故填

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下圖是我國2008年至2014年生活垃圾無害化處理量(單位:億噸)的折線圖.

Ⅰ)由折線圖看出,可用線性回歸模型擬合yt的關(guān)系,請用相關(guān)系數(shù)加以說明;

Ⅱ)建立y關(guān)于t的回歸方程(系數(shù)精確到0.01),預(yù)測2016年我國生活垃圾無害化處理量.

附注:

參考數(shù)據(jù):,

,≈2.646.

參考公式:相關(guān)系數(shù)

回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】,,5名同學(xué)從左至右排成一排,則相鄰且之間恰好有1名同學(xué)的排法有________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場舉行有獎(jiǎng)促銷活動,顧客購買一定金額商品后即可抽獎(jiǎng),每次抽獎(jiǎng)都從裝有4個(gè)紅球、6個(gè)白球的甲箱和裝有5個(gè)紅球、5個(gè)白球的乙箱中,各隨機(jī)摸出1個(gè)球,在摸出的2個(gè)球中,若都是紅球,則獲一等獎(jiǎng);若只有1個(gè)紅球,則獲二等獎(jiǎng);若沒有紅球,則不獲獎(jiǎng).

(1)求顧客抽獎(jiǎng)1次能獲獎(jiǎng)的概率;

(2)若某顧客有3次抽獎(jiǎng)機(jī)會,記該顧客在3次抽獎(jiǎng)中獲一等獎(jiǎng)的次數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】端午節(jié)吃粽子是我國的傳統(tǒng)習(xí)俗,設(shè)一盤中裝有個(gè)粽子,其中豆沙粽個(gè),肉粽個(gè),白粽個(gè),這三種粽子的外觀完全相同,從中任意選取個(gè)

)求三種粽子各取到個(gè)的概率.

)設(shè)表示取到的豆沙粽個(gè)數(shù),求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù),.

(1)求的單調(diào)區(qū)間

(2)討論零點(diǎn)的個(gè)數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是我國2008年至2014年生活垃圾無害化處理量(單位:億噸)的折線圖:

(Ⅰ)由折線圖看出,可用線性回歸模型擬合yt的關(guān)系,請用相關(guān)系數(shù)加以說明

(Ⅱ)建立y關(guān)于t的回歸方程(系數(shù)精確到0.01),預(yù)測2020年我國生活垃圾無害化處理量

附注:

參考數(shù)據(jù):,,

參考公式:相關(guān)系數(shù),回歸方程中斜率和截距最小二乘估計(jì)公式分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平而直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為 ,曲線的極坐標(biāo)方程為

1)求曲線的直角坐標(biāo)方程;

2)已知點(diǎn)是曲線上一點(diǎn)、分別是上的點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線的焦點(diǎn)為F,準(zhǔn)線為,直線lC交于A,B兩點(diǎn),線段AB中點(diǎn)M的橫坐標(biāo)為2.

1)求C的方程;

2)若l經(jīng)過F,求l的方程.

查看答案和解析>>

同步練習(xí)冊答案