如圖,在長方體ABCD-A1B1C1D1中,AB=AD=2.
(1)證明:面BDD1 B1⊥面ACD1
(2)若E是BC1的中點,P是AC的中點,F(xiàn)是A1C1上的點,C1F=mFA1,試求m的值,使得EF∥D1P.
分析:(1)利用四邊形ABCD是正方形可證AC⊥DB,再證AC⊥面BDD1B1,然后利用線面垂直證明面面垂直;
(2)A1C1與B1D1的交點為Q,連BQ,根據(jù)D1P∥BQ,要使得EF∥D1P,則必有EF∥BQ,求得m的值.
解答:解:(1)證明:在長方體ABCD-A1B1C1D1中,AB=AD=2,
故四邊形ABCD是正方形,AC⊥DB,
又∵D1D⊥面ABCD,AC⊆面ABCD
∴D1D⊥AC,又D1D∩DB=D
∴AC⊥面BDD1B1
∵AC?面AD1C
∴平面BDB1D1⊥平面ACD1          
(2):記A1C1與B1D1的交點為Q,連BQ,
∵P是AC的中點,Q為D1B1的中點,∴PB∥D1Q且PB=D1Q,即四邊形PBQD1為平行四邊形,
∴D1P∥BQ,要使得EF∥D1P,則必有EF∥BQ
在△QBC1中,E是BC1的中點,F(xiàn)是QC1上的點,
∴F是QC1的中點,C1F=
1
2
C1Q=
1
4
C1A1,即C1F=
1
3
FA1
故所求m的值是
1
3
點評:本題考查面面垂直的判定及線線垂直的判定,考查學生的空間想象能力,邏輯推理能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖在長方體ABCD-A1B1C1D1中,三棱錐A1-ABC的面是直角三角形的個數(shù)為:
4
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,定義八個頂點都在某圓柱的底面圓周上的長方體叫做圓柱的內接長方體,圓柱也叫長方體的外接圓柱.設長方體ABCD-A1B1C1D1的長、寬、高分別為a,b,c(其中a>b>c),那么該長方體的外接圓柱側面積的最大值等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若一個n面體中有m個面是直角三角形,則稱這個n面體的直度為.如圖,在長方體ABCD-A1B1C1D1中,四面體A1-ABC的直度為(    )

 

A.         B.               C.                 D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若一個n面體中有m個面是直角三角形,則稱這個n面體的直度為.如圖,在長方體ABCD-A1B1C1D1中,四面體A1-ABC的直度為(    )

 

A.            B.              C.              D.1

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011年四川省成都市高二3月月考數(shù)學試卷 題型:填空題

(文科做)(本題滿分14分)如圖,在長方體

ABCDA1B1C1D1中,AD=AA1=1,AB=2,點E在棱AB上移動.

(1)證明:D1EA1D;

(2)當EAB的中點時,求點E到面ACD1的距離;

(3)AE等于何值時,二面角D1ECD的大小為.                      

 

 

 

(理科做)(本題滿分14分)

     如圖,在直三棱柱ABCA1B1C1中,∠ACB = 90°,CB = 1,

CA =,AA1 =,M為側棱CC1上一點,AMBA1

   (Ⅰ)求證:AM⊥平面A1BC

   (Ⅱ)求二面角BAMC的大。

   (Ⅲ)求點C到平面ABM的距離.

 

 

 

 

 

查看答案和解析>>

同步練習冊答案