(本小題滿分14分)已知函數(shù),。
(1) 若,求函數(shù)的極值;
(2) 設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間;
(3) 若在區(qū)間()上存在一點,使得成立,求的取值范圍。
(1)的極小值為; (2) 當時,在上遞增;時,在上遞減,在上遞增;(3)或 。
解析試題分析:(1)
∴在上遞減,在上遞增 ∴的極小值為……4分
(2) ∴
①當時,,∴在上遞增
②當時,,
∴在上遞減,在上遞增 ……8分
(3)區(qū)間上存在一點,使得成立
在上有解
當時,
由(2)知
當時,在上遞增,
∴ ∴
②當時,在上遞減,在上遞增
(。┊時, 在上遞增
∴
∴無解
(ⅱ)當時, 在上遞減
∴
∴
(ⅲ)當時, 在上遞減,在上遞增
∴
令,則
∴在遞減 ∴ ∴無解
即無解
綜上:或 ……14分
考點:利用導數(shù)研究函數(shù)的極值;利用導數(shù)研究函數(shù)的單調(diào)性;利用導數(shù)求閉區(qū)間上函數(shù)的最值。
點評:本題第一問考查利用導函數(shù)來研究函數(shù)的極值.在利用導函數(shù)來研究函數(shù)的極值時,分三步①求導函數(shù),②求導函數(shù)為0的根,③判斷根左右兩側(cè)的符號,若左正右負,原函數(shù)取極大值;若左負右正,原函數(shù)取極小值.
科目:高中數(shù)學 來源: 題型:解答題
(11分)已知函數(shù)f(x)=x2+2ax-3:
(1)如果f(a+1)-f(a)=9,求a的值; (2)問a為何值時,函數(shù)的最小值是-4。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)已知函數(shù),
(Ⅰ) 若a =1,求函數(shù)的圖像在點處的切線方程;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)如果當且時,恒成立,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分14分)已知為定義在上的奇函數(shù),當時,;
(1)求在上的解析式;
(2)試判斷函數(shù)在區(qū)間上的單調(diào)性,并給出證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分16分)已知函數(shù)(其中為常數(shù),)為偶函數(shù).
(1) 求的值;
(2) 用定義證明函數(shù)在上是單調(diào)減函數(shù);
(3) 如果,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
(1)若,求的值;
(2)若的圖像與直線相切于點,求的值;
(3)在(2)的條件下,求函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com