已知雙曲線的中心在原點,離心率為
3
,若它的一條準線與拋物線y2=4x的準線重合,則該雙曲線的方程是
x2
3
-
y2
6
=1
x2
3
-
y2
6
=1
分析:確定拋物線的準線方程,得到雙曲線的準線方程,假設(shè)雙曲線方程,利用待定系數(shù)法即可得到結(jié)論.
解答:解:∵拋物線y2=4x的準線方程為x=-1
∴雙曲線的準線方程為x=-1
設(shè)雙曲線方程為
x2
a2
-
y2
b2
=1(a>0,b>0)
,則
c
a
=
3
a2
c
=1

∴a=
3
,c=3
∴b2=6
∴雙曲線的方程是
x2
3
-
y2
6
=1

故答案為:
x2
3
-
y2
6
=1
點評:本題考查雙曲線的標準方程,解題的關(guān)鍵是待定系數(shù)法,利用雙曲線的幾何性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的中心在原點,焦點F1,F(xiàn)2在坐標軸上,離心率為
2
,且過點(4,-
10
)
,則雙曲線的標準方程是
x2-y2=6
x2-y2=6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的中心在原點,焦點為F1(5,0),F(xiàn)2(-5,0),且過點(3,0),
(1)求雙曲線的標準方程.
(2)求雙曲線的離心率及準線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的中心在原點,焦點F1,F(xiàn)2在坐標軸上,一條漸近線方程為y=x,且過點(4,-
10
)

(1)求雙曲線方程;
(2)設(shè)A點坐標為(0,2),求雙曲線上距點A最近的點P的坐標及相應(yīng)的距離|PA|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的中心在原點,焦點F1,F(xiàn)2在坐標軸上,一條漸近線方程為y=x,且過點(4,-
10
)
,A點坐標為(0,2),則雙曲線上距點A距離最短的點的坐標是
7
,1)
7
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•豐臺區(qū)一模)已知雙曲線的中心在原點,焦點在x軸上,一條漸近線方程為y=
3
4
x
,則該雙曲線的離心率是
5
4
5
4

查看答案和解析>>

同步練習(xí)冊答案