【題目】設(shè)是同一球面上的四點(diǎn),是邊長為6的等邊三角形,若三棱錐體積的最大值為,則該球的表面積為( )
A. B. C. D.
【答案】A
【解析】
作出圖形由圖知,當(dāng)點(diǎn)D與球心O以及△ABC外接圓圓心三點(diǎn)共線且D與△ABC外接圓圓心位于球心的異側(cè)時(shí),三棱錐D﹣ABC的體積取得最大值,結(jié)合三棱錐的體積求出棱錐的h,然后利用勾股定理求球O的半徑R,最后利用表面積公式可求出答案.
如圖所示,
由題意可知,設(shè)點(diǎn)M為△ABC外接圓的圓心,當(dāng)點(diǎn)D、O、M三點(diǎn)共線時(shí),且D、M分別位于點(diǎn)O的異側(cè)時(shí),三棱錐D﹣ABC的體積取得最大值,
△ABC的面積為,
由于三棱錐D﹣ABC的體積的最大值為,得DM=6,
易知DM⊥平面ABC,則三棱錐D﹣ABC為正三棱錐,△ABC的外接圓直徑為2AM=,∴AM=2,設(shè)球O的半徑為為R,在直角三角形AOM中,
由勾股定理得,即,解得R=4或R=6(舍去)
因此,球O的表面積為.
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓: , 其左右焦點(diǎn)為及,過點(diǎn)的直線交橢圓于兩點(diǎn),線段的中點(diǎn)為, 的中垂線與軸和軸分別交于兩點(diǎn),且、、構(gòu)成等差數(shù)列.
(1)求橢圓的方程;
(2)記的面積為, (為原點(diǎn))的面積為,試問:是否存在直線,使得?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)對(duì)一切實(shí)數(shù),都有成立,且,,.
(1)求的解析式;
(2)記函數(shù)在上的最大值為,最小值為,若,當(dāng)時(shí),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐中, 平面,底面為菱形, , 是中點(diǎn), 是的中點(diǎn), 是上的點(diǎn).
(Ⅰ)求證:平面平面;
(Ⅱ)當(dāng)是中點(diǎn),且時(shí),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐的底面是梯形,,,,,在棱上且.
(1)證明:平面;
(2)若平面,異面直線與所成角的余弦值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在五面體中, , , , ,平面平面..
(1)證明:直線平面;
(2)已知為棱上的點(diǎn),試確定點(diǎn)位置,使二面角的大小為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解我市參加2018年全國高中數(shù)學(xué)聯(lián)賽的學(xué)生考試結(jié)果情況,從中選取60名同學(xué)將其成績(jī)(百分制,均為正數(shù))分成六組后,得到部分頻率分布直方圖(如圖),觀察圖形,回答下列問題:
(1)求分?jǐn)?shù)在內(nèi)的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(2)根據(jù)頻率分布直方圖,估計(jì)本次考試成績(jī)的眾數(shù)、均值;
(3)根據(jù)評(píng)獎(jiǎng)規(guī)則,排名靠前10%的同學(xué)可以獲獎(jiǎng),請(qǐng)你估計(jì)獲獎(jiǎng)的同學(xué)至少需要所少分?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com