已知數(shù)列{an}的前n項和為Sn,且滿足an+Sn=2.
(1)求數(shù)列{an}的通項公式;
(2)求證數(shù)列{an}中不存在三項按原來順序成等差數(shù)列.
分析:(1)由條件,再寫一式,兩式相減,可得{an}是首項為1,公比為
1
2
的等比數(shù)列,從而可求數(shù)列{an}的通項公式;
(2)利用反證法,假設(shè)存在三項按原來順序成等差數(shù)列,從而引出矛盾,即可得到結(jié)論.
解答:(1)解:當(dāng)n=1時,a1+S1=2a1=2,則a1=1.
又an+Sn=2,所以an+1+Sn+1=2,兩式相減得an+1=
1
2
an
所以{an}是首項為1,公比為
1
2
的等比數(shù)列,
所以an=
1
2n-1

(2)證明:假設(shè)存在三項按原來順序成等差數(shù)列,記為ap+1,aq+1,ar+1(p<q<r,且p,q,r∈N*),則2•
1
2q
=
1
2p
+
1
2r
,所以2•2r-q=2r-p+1.①
又因為p<q<r,所以r-q,r-p∈N*
所以①式左邊是偶數(shù),右邊是奇數(shù),等式不成立,所以假設(shè)不成立,原命題得證.
點評:本題考查數(shù)列遞推式,考查數(shù)列的通項,考查反證法的運用,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

19、已知數(shù)列{an}的前n項和Sn=n2(n∈N*),數(shù)列{bn}為等比數(shù)列,且滿足b1=a1,2b3=b4
(1)求數(shù)列{an},{bn}的通項公式;
(2)求數(shù)列{anbn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于(  )
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn=n2+n+1,那么它的通項公式為an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

13、已知數(shù)列{an}的前n項和為Sn=3n+a,若{an}為等比數(shù)列,則實數(shù)a的值為
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn滿足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項公式an
(2)求Sn

查看答案和解析>>

同步練習(xí)冊答案