直棱柱中,底面ABCD是直角梯形,∠BAD=∠ADC=90°,.
(Ⅰ) 求證:AC⊥平面BB1C1C;
(Ⅱ)若P為A1B1的中點(diǎn),求證:DP∥平面BCB1,且DP∥平面ACB1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
BN |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年濰坊市六模) (12分) 如圖,直三棱柱中,底面是以∠ABC為直角的等腰直角三角形,
AC=2a,=3a,D為的中點(diǎn),E為的中點(diǎn).
。1)求直線BE與所成的角;
。2)在線段上是否存在點(diǎn)F,使CF⊥平面,若存在,求出;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年安徽省六安市舒城縣龍河中學(xué)高二(下)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三第五次階段考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,在直三棱柱中,底面為等腰直角三角形,,為棱上一點(diǎn),且平面平面.
(Ⅰ)求證:點(diǎn)為棱的中點(diǎn);
(Ⅱ)判斷四棱錐和的體積是否相等,并證明。
【解析】本試題主要考查了立體幾何中的體積問題的運(yùn)用。第一問中,
易知,面。由此知:從而有又點(diǎn)是的中點(diǎn),所以,所以點(diǎn)為棱的中點(diǎn).
(2)中由A1B1⊥平面B1C1CD,BC⊥平面A1ABD,D為BB1中點(diǎn),可以得證。
(1)過點(diǎn)作于點(diǎn),取的中點(diǎn),連。面面且相交于,面內(nèi)的直線,面!3分
又面面且相交于,且為等腰三角形,易知,面。由此知:,從而有共面,又易知面,故有從而有又點(diǎn)是的中點(diǎn),所以,所以點(diǎn)為棱的中點(diǎn). …6分
(2)相等.ABC-A1B1C1為直三棱柱,∴BB1⊥A1B1,BB1⊥BC,又A1B1⊥B1C1,BC⊥AB,
∴A1B1⊥平面B1C1CD,BC⊥平面A1ABD(9分)∴VA1-B1C1CD=1 /3 SB1C1CD•A1B1=1/ 3 ×1 2 (B1D+CC1)×B1C1×A1B1VC-A1ABD=1 /3 SA1ABD•BC=1 /3 ×1 2 (BD+AA1)×AB×BC∵D為BB1中點(diǎn),∴VA1-B1C1CD=VC-A1ABD
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com