(2012•商丘三模)選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,圓C的方程為ρ=2
2
sin(θ+
π
4
),以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=t
y=1+2t
(t為參數(shù)).
(Ⅰ)求直線l和圓C的直角坐標(biāo)方程;
(Ⅱ)判斷直線l和圓C的位置關(guān)系.
分析:(Ⅰ)消去參數(shù),把參數(shù)方程化為普通方程的方法,把極坐標(biāo)方程兩邊同時(shí)乘以ρ,再根據(jù)極坐標(biāo)與直角坐標(biāo)的互化公式,化為直角坐標(biāo)方程.
(Ⅱ)求出圓心C到直線l的距離,由此距離小于半徑,可得直線l和圓C相交.
解答:解:(Ⅰ)消去參數(shù)t,得直線l的直角坐標(biāo)方程為y=2x+1.…(2分)
ρ=2
2
sin(θ+
π
4
)
 即ρ=2(sinθ+cosθ),兩邊同乘以ρ得ρ2=2(ρsinθ+ρcosθ),
得⊙C的直角坐標(biāo)方程為:(x-1)2+(y-1)2=2.…(6分)
(Ⅱ)圓心C到直線l的距離d=
|2-1+1|
22+12
=
2
5
5
,…(8分)
因?yàn)?nbsp;d<
2
,…(9分)
所以直線l和圓C相交. …(10分)
點(diǎn)評:本題主要考查把參數(shù)方程化為普通方程的方法,把極坐標(biāo)方程化為直角坐標(biāo)方程的方法,直線和圓的位置關(guān)系,點(diǎn)到直線的距離公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•商丘三模)已知等比數(shù)列{an}的前n項(xiàng)和Sn=2n+m(m∈R).
(Ⅰ)求m的值及{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=2log2an-13,數(shù)列{bn}的前n項(xiàng)和為Tn,求使Tn最小時(shí)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•商丘三模)已知不等式2|x-3|+|x-4|<2a.
(Ⅰ)若a=1,求不等式的解集;
(Ⅱ)若已知不等式的解集不是空集,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•商丘三模)已知橢圓M:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
2
2
3
,且橢圓上一點(diǎn)與橢圓的兩個(gè)焦點(diǎn)構(gòu)成的三角形的周長為6+4
2

(Ⅰ)求橢圓M的方程;
(Ⅱ)設(shè)直線l:x=ky+m與橢圓M交手A,B兩點(diǎn),若以AB為直徑的圓經(jīng)過橢圓的右頂點(diǎn)C,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•商丘三模)如圖,在四面體ABCD中,CB=CD,AD⊥BD,點(diǎn)E,F(xiàn)分別是AB,BD的中點(diǎn).
(Ⅰ)求證:平面EFC⊥平面BCD;
(Ⅱ)若平面ABD⊥平面BCD,且AD=BD=BC=1,求三棱錐B-ADC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•商丘三模)已知實(shí)數(shù)x,y滿足
x-y≤1
x≥
1
2
2x+y≤4
,則x-3y的最大值為
2
2

查看答案和解析>>

同步練習(xí)冊答案