已知函數(shù)f(x)=x2+4x+3,
(1)若g(x)=f(x)+bx為偶函數(shù),求b.
(2)證明:函數(shù)f(x)在區(qū)間[-2,+∞)上是增函數(shù).
解:(1)∵函數(shù)f(x)=x
2+4x+3,g(x)=f(x)+bx=x
2+(4+b)x+3 為偶函數(shù),∴g(-x)=g(x),
即 (-x)
2+(4+b)(-x)+3=x
2+(4+b)x+3,解得 4+b=0,b=-4.
(2)設x
2>x
1≥-2,由于f(x
2)-f(x
1)=
-(
)=(x
2+x
1)(x
2-x
1)+4(x
2-x
1)
=(x
2-x
1) (x
2+x
1+4),
由題設可得x
2-x
1>0,x
2+x
1+4>0,∴(x
2-x
1) (x
2+x
1+4)>0,即 f(x
2)>f(x
1),
故函數(shù)f(x)在區(qū)間[-2,+∞)上是增函數(shù).
分析:(1)根據(jù)函數(shù)f(x)的解析式求得g(x)的解析式,再由 g(-x)=g(x),求得b的值.
(2)設x
2>x
1≥-2,滑簡f(x
2)-f(x
1) 等于(x
2-x
1) (x
2+x
1+4)>0,可得函數(shù)f(x)在區(qū)間[-2,+∞)上是增函數(shù).
點評:本題主要考查函數(shù)的奇偶性和單調(diào)性的應用,屬于中檔題.