已知,三點都是平面與平面的公共點,并且是兩個不同的平面,試判斷,三點的位置關系.
共線
因為,,三點是兩個平面的公共點,所以相交,并且于一條直線.,,三點都在這條直線上,即,三點的位置關系是它們共線.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,小明設計了某個產(chǎn)品的包裝盒,他少設計了其中一部分,請你把它補上,使其成為兩邊均有蓋的正方體盒子.

(1)你有__________種彌補的辦法.
(2)任意畫出一種成功的設計圖.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(湖南省●2010年月考)如圖,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1,M、N分別是A1B、B1C1的中點.

(Ⅰ)求證:MN⊥平面A1BC;
(Ⅱ)求直線BC1和平面A1BC所成角的大小.
                                                       
                                                       

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,在正方體ABCD-A1B1C1D1中,E、F分別為CC1、AA1的中點,畫出平面BED1F 與平面ABCD的交線.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題


下列幾何體中,        是棱柱,        是棱錐,        是棱臺.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,正三棱柱ABCA1B1C1的底面邊長是2,D是側(cè)棱CC1的中點,直線AD與側(cè)面BB1C1C所成的角為45°.
小題1:求此正三棱柱的側(cè)棱長;
小題2:求二面角A-BD-C的大。
小題3:求點C到平面ABD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知正方體ABCD-A1B1C1D1的棱長為1,以頂點A為球心,為半徑作一個球,則球面與正方體的表面相交所得到的曲線的長等于       。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

【挑戰(zhàn)自我】
如圖,已知PD⊥平面ABCD,AD⊥DC,AD∥BC,PD∶DCBC=1∶1∶.
(1)求二面角D-PBC的正切值;
(2)當AD∶BC的值是多少時,能使平面PAB⊥平面PBC?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


如圖,已知正三棱柱的底面邊長是,、E是、BC的中點,AE=DE
(1)求此正三棱柱的側(cè)棱長;(2)正三棱柱表面積;

查看答案和解析>>

同步練習冊答案