(12分)已知拋物線(xiàn)y2=2px(p>0)的焦點(diǎn)為F,A,B,C為拋物線(xiàn)上三點(diǎn)。若,且。(1)求拋物線(xiàn)方程。(2)(文)若OA⊥OB,直線(xiàn)AB與x軸交于一點(diǎn)(m,0),求m。(2)(理)若以為AB為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)O,則求證直線(xiàn)經(jīng)過(guò)一定點(diǎn),并求出定點(diǎn)坐標(biāo)。

 

【答案】

解:(1)設(shè)

得:

得:

由①②得:P=2     所以,拋物線(xiàn)方程為:

(2)由OA⊥OB得:  聯(lián)立直線(xiàn)AB與拋物線(xiàn)的方程,由韋達(dá)定理代入運(yùn)算,可解得m=0(舍)或m=4

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)y2=2px(p>0).過(guò)動(dòng)點(diǎn)M(a,0)且斜率為1的直線(xiàn)l與該拋物線(xiàn)交于不同的兩點(diǎn)A、B,|AB|≤2p.
(1)求a的取值范圍;
(2)若線(xiàn)段AB的垂直平分線(xiàn)交x軸于點(diǎn)N,求△NAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線(xiàn)為l.
(1)求拋物線(xiàn)上任意一點(diǎn)Q到定點(diǎn)N(2p,0)的最近距離;
(2)過(guò)點(diǎn)F作一直線(xiàn)與拋物線(xiàn)相交于A,B兩點(diǎn),并在準(zhǔn)線(xiàn)l上任取一點(diǎn)M,當(dāng)M不在x軸上時(shí),證明:
kMA+kMBkMF
是一個(gè)定值,并求出這個(gè)值.(其中kMA,kMB,kMF分別表示直線(xiàn)MA,MB,MF的斜率)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)y2=2px(p>0).過(guò)動(dòng)點(diǎn)M(a,0)且斜率為1的直線(xiàn)l與該拋物線(xiàn)交于不同的兩點(diǎn)A、B,|AB|≤2p.求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•聊城一模)已知拋物線(xiàn)y2=2px(p>0),過(guò)點(diǎn)M(2p,0)的直線(xiàn)與拋物線(xiàn)相交于A,B,
OA
OB
=
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)y2=2px(p>0),M(2p,0),A、B是拋物線(xiàn)上的兩點(diǎn).求證:直線(xiàn)AB經(jīng)過(guò)點(diǎn)M的充要條件是OA⊥OB,其中O是坐標(biāo)原點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案