已知三個(gè)正數(shù)a,b,c滿足a<b<c.
(Ⅰ)若a,b,c是從1,2,3,4,5中任取的三個(gè)數(shù),求a,b,c能構(gòu)成三角形三邊長(zhǎng)的概率;
(Ⅱ)若a,b,c是從區(qū)間(0,1)內(nèi)任取的三個(gè)數(shù),求a,b,c能構(gòu)成三角形三邊長(zhǎng)的概率.
(Ⅰ)首先任選3個(gè)數(shù),共有C53=10種情況,
其中能構(gòu)成三角形的有2,3,4;2,4,5;3,4,5三種情況,
故能構(gòu)成三角形三邊的概率是
3
10

(Ⅱ)記Ω={(a,b,c)|
0<a<1
0<b<1
0<c<1
},a,b,c能構(gòu)成三角形三邊長(zhǎng)為事件A,
則A={(a,b,c)|
0<a<1
0<b<1
0<c<1
a+b>c
a+c>b
b+c>a
}
在空間直角坐標(biāo)系oabc內(nèi)畫出滿足以上條件的區(qū)域,如圖所示,
可求得正方體的體積是1,三棱錐O-ABC的體積與三棱錐D-ABC和是
1
2
,
由幾何概型的計(jì)算得,
從區(qū)間(0,1)內(nèi)任取的三個(gè)數(shù)a,b,c能構(gòu)成三角形三邊長(zhǎng)的概率為P(A)=
VO-ABC+VD-ABC
正方體的體積
=
1
2
1
=
1
2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(1)設(shè)點(diǎn)A(p,q)在|p|≤3,|q|≤3范圍內(nèi)均勻分布,求一元二次方程x2-2px-q2+1=0有實(shí)根的概率.
(2)p是從0,1,2,3四個(gè)數(shù)中任取的一個(gè)數(shù),q是從0,1,2,三個(gè)數(shù)中任取的一個(gè)數(shù),求上述x2-2px-q2+1=0有實(shí)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在△ABC內(nèi)任取一點(diǎn)P則△ABP與△ABC的面積之比大于
2
3
的概率是(  )
A.
1
4
B.
2
3
C.
1
9
D.
1
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在區(qū)間[0,1]上隨機(jī)地任取兩個(gè)數(shù)a,b,則滿足a2+b2
1
4
的概率為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在區(qū)間[-2,2]內(nèi)隨機(jī)取兩個(gè)數(shù)分別記為a,b,則使得a2+b2≤4的概率為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知△ABC中,AB=4,BC=6,∠ABC=30°,一只螞蟻在該三角形區(qū)域內(nèi)隨機(jī)爬行,則其恰好在離三個(gè)頂點(diǎn)距離都大于1的地方的概率為(  )
A.
π
12
B.1-
π
12
C.1-
π
6
D.
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若a是從區(qū)間[0,3]任取的一個(gè)數(shù),b是從區(qū)間[0,2]任取的一個(gè)數(shù),則關(guān)于x的一元二次方程x2+2ax+b2=0有實(shí)根的概率是( 。
A.
3
4
B.
2
3
C.
4
9
D.
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

從1,2,3,4,5中任取2個(gè)不同的數(shù),事件A=“取到的2個(gè)數(shù)之和為偶數(shù)”,事件B=“取到的2個(gè)數(shù)均為偶數(shù)”,則P(B|A)=(  ).
A.           B.             C.            D .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在商場(chǎng)付款處排隊(duì)等候付款的人數(shù)及其概率如下:
排隊(duì)人數(shù)
0
1
2
3
4
5人以上
概率
0.1
0.16
0.3
0.3
0.1
0.04
則至少有兩人排隊(duì)的概率是(    )
A.0.9        B. 0.74        C. 0.56         D.0.26

查看答案和解析>>

同步練習(xí)冊(cè)答案