(本小題滿分15分)如圖所示,在直四棱柱中,, ,點(diǎn)是棱上一點(diǎn).(Ⅰ)求證:;(5分)

(Ⅱ)求證:;(5分)

(Ⅲ)試確定點(diǎn)的位置,使得平面平面. (5分)

:(Ⅰ)略 (Ⅱ) 略(Ⅲ) 點(diǎn)為棱的中點(diǎn)


解析:

(Ⅰ)證明:由直四棱柱,得,

所以是平行四邊形,所以     (3分)

    而,,所以        …(5分)

(Ⅱ)證明:因?yàn)?img width=185 height=24 src="http://thumb.zyjl.cn/pic1/1899/sx/106/316306.gif">, 所以        ……(7分)

又因?yàn)?img width=61 height=17 src="http://thumb.zyjl.cn/pic1/1899/sx/108/316308.gif">,且,所以      ………… ……(9分)

,所以 ……(10分)

(Ⅲ)當(dāng)點(diǎn)為棱的中點(diǎn)時(shí),平面平面… (11分)

取DC的中點(diǎn)N,,連結(jié),連結(jié).

因?yàn)镹是DC中點(diǎn),BD=BC,所以;又因?yàn)镈C是面ABCD與面的交線,而面ABCD⊥面,所以………(13分)

又可證得,的中點(diǎn),所以BM∥ON且BM=ON,即BMON是平行四邊形,所以BN∥OM,所以O(shè)M平面,因?yàn)镺M?面DMC1,所以平面平面……(15分)

點(diǎn)評(píng):本小題主要考查直線與平面的位置關(guān)系,考查空間想象能力、邏輯思維能力和運(yùn)算能力。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建省高三上學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分15分)

已知函數(shù)

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若,試分別解答以下兩小題.

(。┤舨坏仁對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍;

(ⅱ)若是兩個(gè)不相等的正數(shù),且,求證:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省高三下學(xué)期3月聯(lián)考理科數(shù)學(xué) 題型:解答題

(本小題滿分15分).

已知分別為橢圓

上、下焦點(diǎn),其中也是拋物線的焦點(diǎn),

點(diǎn)在第二象限的交點(diǎn),且。

(Ⅰ)求橢圓的方程;

(Ⅱ)已知點(diǎn)P(1,3)和圓,過(guò)點(diǎn)P的動(dòng)直線與圓相交于不同的兩點(diǎn)A,B,在線段AB取一點(diǎn)Q,滿足:,)。求證:點(diǎn)Q總在某定直線上。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省高三上學(xué)期第三次月考數(shù)學(xué)文卷 題型:解答題

(本小題滿分15分)

如圖已知,橢圓的左、右焦點(diǎn)分別為、,過(guò)的直線與橢圓相交于A、B兩點(diǎn)。

(Ⅰ)若,且,求橢圓的離心率;

(Ⅱ)若的最大值和最小值。

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆浙江省寧波市高一上學(xué)期期末考試數(shù)學(xué) 題型:解答題

(本小題滿分15分)若函數(shù)在定義域內(nèi)存在區(qū)間,滿足上的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052202033078124869/SYS201205220205036875888611_ST.files/image002.png">,則稱這樣的函數(shù)為“優(yōu)美函數(shù)”.

(Ⅰ)判斷函數(shù)是否為“優(yōu)美函數(shù)”?若是,求出;若不是,說(shuō)明理由;

(Ⅱ)若函數(shù)為“優(yōu)美函數(shù)”,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011年江蘇省高二下學(xué)期期中考試?yán)頂?shù) 題型:解答題

(本小題滿分15分)在5道題中有3道理科題和2道文科題,如果不放回地依次抽取2道題.求:

(1)第1次抽到理科題的概率;

(2)第1次和第2次都抽到理科題的概率;

(3)在第1次抽到理科題的條件下,第2次抽到文科題的概率

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案