【題目】已知集合A,B滿足,集合A={x|x=7k+3,k∈N},B={x|x=7k﹣4,k∈Z},則A,B兩個集合的關(guān)系:AB(橫線上填入,或=)
【答案】?
【解析】解:根據(jù)題意,集合A={x|x=7k+3,k∈N},表示所有比7的整數(shù)倍大3的整數(shù),其最小值為3,
B={x|x=7k﹣4,k∈Z},表示所有比7的整數(shù)倍小4的整數(shù),
也表示所有比7的整數(shù)倍大3的整數(shù),
故AB;
所以答案是:.
【考點精析】掌握集合的表示方法-特定字母法是解答本題的根本,需要知道①自然語言法:用文字敘述的形式來描述集合.②列舉法:把集合中的元素一一列舉出來,寫在大括號內(nèi)表示集合.③描述法:{|具有的性質(zhì)},其中為集合的代表元素.④圖示法:用數(shù)軸或韋恩圖來表示集合.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為方便市民休閑觀光,市政府計劃在半徑為200米,圓心角為120°的扇形廣場內(nèi)(如圖所示),沿△ABC邊界修建觀光道路,其中A、B分別在線段CP、CQ上,且A、B兩點間距離為定長 米.
(1)當∠BAC=45°時,求觀光道BC段的長度;
(2)為提高觀光效果,應(yīng)盡量增加觀光道路總長度,試確定圖中A、B兩點的位置,使觀光道路總長度達到最長?并求出總長度的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2x+2ax+b , 且 , .
(Ⅰ)求實數(shù)a,b的值并判斷函數(shù)f(x)的奇偶性;
(Ⅱ)判斷函數(shù)f(x)在[0,+∞)上的單調(diào)性,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個命題:
①已知M={(x,y)| =3},N={(x,y)|ax+2y+a=0}且M∩N=,則a=﹣6;
②已知點A(x1 , y1),B(x2 , y2),則以AB為直徑的圓的方程是(x﹣x1)(x﹣x2)+(y﹣y1)(y﹣y2)=0;
③ =1(a≠b)表示焦點在x軸上的橢圓;
④已知拋物線y2=2px(p>0)的焦點弦AB的兩端點坐標分別為A(x1 , y2),B(x2 , y2),則 =﹣4
其中的真命題是 . (把你認為是真命題的序號都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,已知中心在原點,離心率為的橢圓的一個焦點為圓: 的圓心.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)是橢圓上一點,過作兩條斜率之積為的直線, ,當直線, 都與圓相切時,求的坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點P是曲線C: ﹣y2=1上的任意一點,直線l:x=2與雙曲線C的漸近線交于A,B兩點,若 =λ +μ ,(λ,μ∈R,O為坐標原點),則下列不等式恒成立的是( )
A.λ2+μ2≥
B.λ2+μ2≥2
C.λ2+μ2≤
D.λ2+μ2≤2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了估計某校的一次數(shù)學(xué)考試情況,現(xiàn)從該校參加考試的600名學(xué)生中隨機抽出60名學(xué)生,其成績(百分制)均在[40,100)上,將這些成績分成六段[40,50),[50,60)…[90,100),后得到如圖所示部分頻率分布直方圖.
(1)求抽出的60名學(xué)生中分數(shù)在[70,80)內(nèi)的人數(shù);
(2)若規(guī)定成績不小于85分為優(yōu)秀,則根據(jù)頻率分布直方圖,估計該校優(yōu)秀人數(shù).
(3)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點,且的離心率為.
(1)求的方程;
(2)過的頂點作兩條互相垂直的直線與橢圓分別相交于兩點.若的角平分線方程為,求的面積及直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017福建三明5月質(zhì)檢】已知橢圓的右焦點,橢圓的左,右頂點分別為.過點的直線與橢圓交于兩點,且的面積是的面積的3倍.
(Ⅰ)求橢圓的方程;
(Ⅱ)若與軸垂直,是橢圓上位于直線兩側(cè)的動點,且滿足,試問直線的斜率是否為定值,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com