設(shè)橢圓的長軸兩端點為、,異于的點在橢圓上,則 的斜率之積為            .
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,已知橢圓的離心率為,短軸的一個端點到右焦點的距離為.設(shè)直線與橢圓相交于兩點,點關(guān)于軸對稱點為
(1)求橢圓的方程;
(2)若以線段為直徑的圓過坐標(biāo)原點,求直線的方程;
(3)試問:當(dāng)變化時,直線軸是否交于一個定點?若是,請寫出定點的坐標(biāo),并證明你的結(jié)論;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分)
已知橢圓C的焦點F1(-,0)和F2,0),長軸長6,設(shè)直線交橢圓C于A  B兩點,且線段AB的中點坐標(biāo)是P(-,),求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

:已知橢圓P的中心O在坐標(biāo)原點,焦點在x坐標(biāo)軸上,且經(jīng)過點,離心率為
(1)求橢圓P的方程:
(2)是否存在過點E(0,-4)的直線l交橢圓P于點R,T,且滿足.若存在,求直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
設(shè)橢圓的左右焦點分別為、,是橢圓上的一點,,坐標(biāo)原點到直線的距離為
(1)求橢圓的方程;
(2)設(shè)是橢圓上的一點,過點的直線軸于點,交軸于點,若,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

、設(shè)橢圓,雙曲線,拋物線(其中的離心率分別為,則的值為                              (    )     
                 有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓的左、右焦點分別為F1  F2,以F1 F2為直徑的圓與橢圓在y軸左側(cè)的部分交于A,B兩點,且ΔF2AB是等邊三角形,則橢圓的離心率為­______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若橢圓的離心率為,則=                .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知水平地面上有一籃球,在斜平行光線的照射下,其陰影為一橢圓(如上圖),在平面直角坐標(biāo)系中,O為原點,設(shè)橢圓的方程為),籃球與地面的接觸點為H,則|OH|=           .

查看答案和解析>>

同步練習(xí)冊答案