在下列關(guān)于直線與平面的命題中,正確的是(      )
A.若,則B.若,則
C.若,則D.若,且,則
B

試題分析:解:A不正確,由面面垂直的性質(zhì)定理可推出;D不正確,可能;B正確,由線面垂直的定義和定理,面面平行的性質(zhì)定理可推出;C不正確,由面面垂直的性質(zhì)定理可知,,且,,則;故選B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,底面ABCD是∠DAB=60°,且邊長為a的菱形,側(cè)面PAD為正三角形,其所在平面垂直底面ABCD.

(1)若G為AD邊的中點(diǎn),求證:BG⊥平面PAD;
(2)求證:AD⊥PB;
(3)若E為BC邊的中點(diǎn),能否在棱PC上找到一點(diǎn)F,使平面DEF⊥平面ABCD,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知正四棱柱中,.
(1)求證:
(2)求二面角的余弦值;
(3)在線段上是否存在點(diǎn),使得平面平面,若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(2011•浙江)如圖,在三棱錐P﹣ABC中,AB=AC,D為BC的中點(diǎn),PO⊥平面ABC,垂足O落在線段AD上,已知BC=8,PO=4,AO=3,OD=2
(1)證明:AP⊥BC;
(2)在線段AP上是否存在點(diǎn)M,使得二面角A﹣MC﹣β為直二面角?若存在,求出AM的長;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)如圖,在三棱柱中,底面,,E、F分別是棱的中點(diǎn).

(Ⅰ)求證:AB⊥平面AA1 C1C;
(Ⅱ)若線段上的點(diǎn)滿足平面//平面,試確定點(diǎn)的位置,并說明理由;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,四邊形ABCD是平行四邊形,且AC⊥CD,PA=AD,M,Q分別是PD,BC的中點(diǎn).
(1)求證:MQ∥平面PAB;
(2)若AN⊥PC,垂足為N,求證:MN⊥PD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐中,底面為矩形,平面,,中點(diǎn),上一點(diǎn).
(1)求證:平面
(2)當(dāng)為何值時(shí),二面角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在三棱錐中,,,的中點(diǎn),,=.

(1)求證:平面⊥平面
(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

[2014·長春質(zhì)檢]如圖,四棱錐P-ABCD的底面是一直角梯形,AB∥CD,BA⊥AD,CD=2AB,PA⊥底面ABCD,E為PC的中點(diǎn),則BE與平面PAD的位置關(guān)系為________.

查看答案和解析>>

同步練習(xí)冊(cè)答案