某售報亭每天以每份0.4元的價格從報社購進(jìn)若干份報紙,然后以每份1元的價格出售,如果當(dāng)天賣不完,剩下的報紙以每份0.1元的價格賣給廢品收購站.
(Ⅰ)若售報亭一天購進(jìn)270份報紙,求當(dāng)天的利潤(單位:元)關(guān)于當(dāng)天需求量(單位:份,)的函數(shù)解析式.
(Ⅱ)售報亭記錄了100天報紙的日需求量(單位:份),整理得下表:

日需求量
240
250
260
270
280
290
300
 頻數(shù)
10
20
16
16
15
13
10
以100天記錄的需求量的頻率作為各銷售量發(fā)生的概率.
(1)若售報亭一天購進(jìn)270份報紙,表示當(dāng)天的利潤(單位:元),求的數(shù)學(xué)期望;
(2)若售報亭計劃每天應(yīng)購進(jìn)270份或280份報紙,你認(rèn)為購進(jìn)270份報紙好,還是購進(jìn)280份報紙好? 說明理由.

(Ⅰ)(Ⅱ)(1)(2)每天購進(jìn)280張報紙好,此時利潤最高.

解析試題分析:(Ⅰ)當(dāng)時,;
當(dāng)時,,
                                   ……5分
(Ⅱ)(1)可取135、144、153、162, 則
,,.
.               ……9分
(2)購進(jìn)報紙280張,當(dāng)天的利潤為
 
所以每天購進(jìn)280張報紙好                                              ……12分
考點:本小題主要考查用函數(shù)解決實際問題,離散型隨機(jī)變量的期望和最優(yōu)化問題.
點評:解決實際問題,關(guān)鍵是根據(jù)題意進(jìn)行準(zhǔn)確轉(zhuǎn)化,轉(zhuǎn)化為熟悉的數(shù)學(xué)模型解決問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)某市現(xiàn)有從事第二產(chǎn)業(yè)人員100萬人,平均每人每年創(chuàng)造產(chǎn)值a萬元(a為正常數(shù)),現(xiàn)在決定從中分流x萬人去加強第三產(chǎn)業(yè)。分流后,繼續(xù)從事第二產(chǎn)業(yè)的人員平均每人每年創(chuàng)造產(chǎn)值可增加2x%(0<x<100)。而分流出的從事第三產(chǎn)業(yè)的人員,平均每人每年可創(chuàng)造產(chǎn)值1.2a萬元。
(1)若要保證第二產(chǎn)業(yè)的產(chǎn)值不減少,求x的取值范圍;
(2)在(1)的條件下,問應(yīng)分流出多少人,才能使該市第二、三產(chǎn)業(yè)的總產(chǎn)值增加最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某企業(yè)擬建造如圖所示的容器(不計厚度,長度單位:米),其中容器的中間為圓柱形,左右兩端均為半球形,按照設(shè)計要求容器的體積為立方米,且.假設(shè)該容器的建造費用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費用為3千元,半球形部分每平方米建造費用為千元,設(shè)該容器的建造費用為千元.

(1)寫出關(guān)于的函數(shù)表達(dá)式,并求該函數(shù)的定義域;
(2)求該容器的建造費用最小時的

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某蔬菜基地種植西紅柿,由歷年市場行情得知,從二月一日起的300天內(nèi),西紅柿市場售價與上市時間的關(guān)系用圖1的一條折線表示;西紅柿的種植成本與上市時間的關(guān)系用圖2的拋物線表示.
(1)寫出圖1表示的市場售價與時間的函數(shù)關(guān)系式;寫出圖2表示的種植成本與時間的函數(shù)關(guān)系式
(2)認(rèn)定市場售價減去種植成本為純收益,問何時上市的西紅柿純收益最大?

(注:市場售價和種植成本的單位:元/百千克,時間單位:天)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)在原點相切,若函數(shù)的極小值為
(1)         
(2)求函數(shù)的遞減區(qū)間。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)的定義域為,對任意的實數(shù)都有;當(dāng)時,,且.(1)判斷并證明上的單調(diào)性;
(2)若數(shù)列滿足:,且,證明:對任意的,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分15分)
經(jīng)過長期的觀測得到:在交通繁忙時段,某公路段汽車的車流量y(千輛/小時)與汽車的平均速度v(千米/小時)之間的函數(shù)關(guān)系為
(1)在該時段內(nèi),當(dāng)汽車的平均速度v為多少時,車流量最大?最大車流量為多少?
(精確到0.1千輛/小時)
(2)若要求在該時段內(nèi)車流量超過10千輛/小時,則汽車的平均速度應(yīng)在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知二次函數(shù),關(guān)于的不等式的解集為,其中為非零常數(shù).設(shè).
(1)求的值;
(2)R如何取值時,函數(shù)存在極值點,并求出極值點;
(3)若,且,求證:N

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)上海某玩具廠生產(chǎn)套世博吉祥物“海寶”所需成本費用為元,且,而每套“海寶”售出的價格為元,其中 ,
(1)問:該玩具廠生產(chǎn)多少套“海寶”時,使得每套所需成本費用最少?
(2)若生產(chǎn)出的“海寶”能全部售出,且當(dāng)產(chǎn)量為150套時利潤最大,此時每套價格為30元,求的值.(利潤 = 銷售收入-成本)

查看答案和解析>>

同步練習(xí)冊答案