將標號為1,2,…,10的10個球放入標號為1,2,…,10的10個盒子內(nèi),每個盒內(nèi)放一個球,則恰好有3個球的標號與其所在盒子的標號不一致的放入方法共有_________種(以數(shù)字作答).

思路解析:從標號為1,2,…,10的10個球中選出7個放到相應標號的盒中有種,則剩下3個球的標號放在與其所在盒子的標號不一致的盒中、不妨設為1,2,3號球,則1,2,3號盒中所放球為2,3,1;3,1,2兩種、共有×2=240種.

答案:240

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

8、將標號為1,2,…,10的10個球放入標號為1,2,…,10的10個盒子里,每個盒內(nèi)放一個球,恰好3個球的標號與其在盒子的標號不一致的放入方法種數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

16、將標號為1,2,…,10的10個球放入標號為1,2,…,10的10個盒子內(nèi),每個盒內(nèi)放一個球,則恰好有3個球的標號與其所在盒子的標號不一致的放入方法共有
240
種.(以數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將標號為1,2,…,5的5個球放入標號為1,2,…,5的5個盒子內(nèi),.每個盒內(nèi)放一個球,則恰好有3個球的標號與其所在盒子的標號不一致的概率是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將標號為1,2,…,9的9個球放入標號為1,2,…,9的9個盒子里,每個盒內(nèi)放一個球,恰好3個球的標號與其所在盒子的標號不一致的放入方法種數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理)將標號為1,2,3,4,5,6的6張卡片放入3個不同的信封中,若每個信封放2張,則標號為1,2的卡片放入同一個信封的概率為
 

查看答案和解析>>

同步練習冊答案