精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=ax2+4x+b(a<0,且a,b∈R).設關于x的不等式f(x)>0的解集為(x1,x2),且方程f(x)=x的兩實根為α,β.
(1)若|α-β|=1,求a,b的關系式;
(2)若α<1<β<2,求證:(x1+1)(x2+1)<7.
分析:(1)要求a,b的關系式,可根據方程f(x)=x的兩實根為α,β.結合韋達定理(根與系數的關系),用a,b表示α,β.又則|α-β|=1,給出a,b的關系,但在分析過程中,要注意方程有兩個不相等的根時,方程的判別式大于零.
(2)由α<1<β<2,我們可以根據零點的存在定理,我們可以得到f(1),f(2)異號,代入可以構造一個關于a,b的不等式組,畫出他們表示的平面區(qū)域,利用線性規(guī)劃不難得到結論.
解答:精英家教網解:(1)由f(x)=x,
得ax2+3x+b=0,
由已知得9-4ab>0,
α+β=-
3
a
,αβ=+
b
a

|α-β|=
(α+β)2-4αβ
=1
,
9
a2
-
4b
a
=1

∴a2+4ab=9,
∴a、b的關系式為a2+4ab=9.
(2)令g(x)=ax2+3x+b,
又a<0,α<1<β<2.
g(1)>0
g(2)<0
,
g(1)=a+b+3>0
g(2)=4a+b+6<0

又x1,x2是方程ax2+4x+b=0的兩根,
x1+x2=-
4
a
,x1x2=
b
a

∴(x1+1)(x2+1)=x1x2+(x1+x2)+1=
b
a
-
4
a
+1=
b-4
a
+1

由線性約束條件
a+b+3>0
4a+b+6<0
a<0.
,畫圖可知.
b-4
a
的取值范圍為(-4,6),
-3<
b-4
a
+1<6+1=7

∴(x1+1)(x2+1)<7.
點評:用圖解法解決線性規(guī)劃問題時,分析題目的已知條件,找出約束條件和目標函數是關鍵,可先將題目中的量分類、列出表格,理清頭緒,然后列出不等式組(方程組)尋求約束條件,并就題目所述找出目標函數.然后將可行域各角點的值一一代入,最后比較,即可得到目標函數的最優(yōu)解.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•海淀區(qū)二模)已知函數f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a|x|的圖象經過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a•2x+b•3x,其中常數a,b滿足a•b≠0
(1)若a•b>0,判斷函數f(x)的單調性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a-2|x|+1(a≠0),定義函數F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數F(x)是奇函數;③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習冊答案