【題目】已知數(shù)列滿足

(1)證明數(shù)列是等比數(shù)列;

(2)求數(shù)列的前項(xiàng)和

【答案】(1)見解析(2)

【解析】試題分析:(1)要證明數(shù)列是等比數(shù)列,即證明(常數(shù)),根據(jù)代入即可證明;(2)根據(jù)(1)的結(jié)果,可知,,當(dāng)時,,所以求的和時,可先分時,,當(dāng)時,,最后驗(yàn)證是否成立.

試題解析:(1,...................................1

.............3

............................4

是以2為首項(xiàng),2為公比的等比數(shù)列............................5

2)由(1),可知.....................7

當(dāng)時, ,;...........................8

當(dāng)時, ,

....................9

……………………………11

又當(dāng)時,上式也滿足.

當(dāng)時, ....................12

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù))是定義在上的奇函數(shù).

(1)求的值;

(2)求函數(shù)的值域;

(3)當(dāng)時, 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Acos( + ),x∈R,且f( )=
(1)求A的值;
(2)設(shè)α,β∈[0, ],f(4α+ π)=﹣ ,f(4β﹣ π)= ,求cos(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)橢圓)的左、右焦點(diǎn)分別為,點(diǎn)在橢圓上, , , 的面積為.

(Ⅰ)求該橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)是否存在圓心在軸上的圓,使圓在軸的上方與橢圓

有兩個交點(diǎn),且圓在這兩個交點(diǎn)處的兩條切線相互垂直并分別過不同的焦點(diǎn)?若存在,求圓的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在( n的展開式中,第6項(xiàng)為常數(shù)項(xiàng).
(1)求n;
(2)求含x2項(xiàng)的系數(shù);
(3)求展開式中所有的有理項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有0,1,2,3,4,5六個數(shù)字.
(1)用所給數(shù)字能夠組成多少個四位數(shù)?
(2)用所給數(shù)字可以組成多少個沒有重復(fù)數(shù)字的五位數(shù)?
(3)用所給數(shù)字可以組成多少個沒有重復(fù)數(shù)字且比3142大的數(shù)?(最后結(jié)果均用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中共有8個球,其中3個紅球、2個白球、3個黑球.若從袋中任取3個球,則所取3個球中至多有1個紅球的概率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知p:|1﹣ |≤2,q:x2﹣2x+1﹣m2≤0(m>0).若“非p”是“非q”的必要而不充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)奇函數(shù)定義在上,其導(dǎo)函數(shù)為,當(dāng)時, ,則不等式的解集為

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊答案