如圖,橢圓的中心為原點(diǎn)O,長軸在x軸上,離心率e=,過左焦點(diǎn)F1作x軸的垂線交橢圓于A、A′兩點(diǎn),=4.

(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)取平行于y軸的直線與橢圓相交于不同的兩點(diǎn)P、P′,過P、P′作圓心為Q的圓,使橢圓上的其余點(diǎn)均在圓Q外.求△PP′Q的面積S的最大值,并寫出對應(yīng)的圓Q的標(biāo)準(zhǔn)方程.
(1)+=1  (2)2  (x+)2+y2=6,(x-)2+y2=6

解:(1)由題意知點(diǎn)A(-c,2)在橢圓上,則+=1,從而e2+=1,
又e=,故b2==8,從而a2==16.
故該橢圓的標(biāo)準(zhǔn)方程為+=1.
(2)由橢圓的對稱性,可設(shè)Q(x0,0).又設(shè)M(x,y)是橢圓上任意一點(diǎn),則|QM|2=(x-x0)2+y2=x2-2x0x++8×(1-)=(x-2x0)2-+8(x∈[-4,4]).
設(shè)P(x1,y1),由題意知,P是橢圓上到Q的距離最小的點(diǎn),
因此,當(dāng)x=x1時(shí)|QM|2取最小值,
又x1∈(-4,4),所以當(dāng)x=2x0時(shí)|QM|2取最小值,
從而x1=2x0,且|QP|2=8-.
由對稱性知P′(x1,-y1),故|PP′|=|2y1|,
所以S=|2y1||x1-x0|
=×2|x0|
=
=·.
當(dāng)x0時(shí),△PP′Q的面積S取得最大值2.
此時(shí)對應(yīng)的圓Q的圓心坐標(biāo)為Q(±,0),半徑|QP|==,
因此,這樣的圓有兩個(gè),其標(biāo)準(zhǔn)方程分別為(x+)2+y2=6,(x-)2+y2=6.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)定圓,動圓過點(diǎn)且與圓相切,記動圓圓心的軌跡為.
(1)求軌跡的方程;
(2)已知,過定點(diǎn)的動直線交軌跡、兩點(diǎn),的外心為.若直線的斜率為,直線的斜率為,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓的離心率是,它被直線截得的弦長是,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:+=1(a>b>0).
(1)若橢圓的長軸長為4,離心率為,求橢圓的標(biāo)準(zhǔn)方程.
(2)在(1)的條件下,設(shè)過定點(diǎn)M(0,2)的直線l與橢圓C交于不同的兩點(diǎn)A,B,且∠AOB為銳角(其中O為坐標(biāo)原點(diǎn)),求直線l的斜率k的取值范圍.
(3)過原點(diǎn)O任意作兩條互相垂直的直線與橢圓+=1(a>b>0)相交于P,S,R,Q四點(diǎn),設(shè)原點(diǎn)O到四邊形PQSR一邊的距離為d,試求d=1時(shí)a,b滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓=1(a>b>0),點(diǎn)P在橢圓上.
(1)求橢圓的離心率;
(2)設(shè)A為橢圓的左頂點(diǎn),O為坐標(biāo)原點(diǎn).若點(diǎn)Q在橢圓上且滿足AQ=AO,求直線OQ的斜率的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C1的中心在坐標(biāo)原點(diǎn),兩個(gè)焦點(diǎn)分別為F1(-2,0),F2(2,0),點(diǎn)A(2,3)在橢圓C1上,過點(diǎn)A的直線L與拋物線C2:x2=4y交于B,C兩點(diǎn),拋物線C2在點(diǎn)B,C處的切線分別為l1,l2,且l1與l2交于點(diǎn)P.
(1)求橢圓C1的方程;
(2)是否存在滿足|PF1|+|PF2|=|AF1|+|AF2|的點(diǎn)P?若存在,指出這樣的點(diǎn)P有幾個(gè)(不必求出點(diǎn)P的坐標(biāo));若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線-=1(a>0,b>0)和橢圓+=1有相同的焦點(diǎn),且雙曲線的離心率是橢圓離心率的兩倍,則雙曲線的方程為    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,已知A,B分別為橢圓+=1(a>b>0)的右頂點(diǎn)和上頂點(diǎn),直線l∥AB,l與x軸、y軸分別交于C,D兩點(diǎn),直線CE,DF為橢圓的切線,則CE與DF的斜率之積kCE·kDF等于(  )
A.±B.±
C.±D.±

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)橢圓C:+=1(a>b>0)的左、右焦點(diǎn)分別為F1,F2,P是C上的點(diǎn),PF2⊥F1F2,∠PF1F2=30°,則C的離心率為(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案