(2012•深圳二模)已知命題P:“對(duì)任意a,b∈N*,都有l(wèi)g(a+b)≠lga+lgb”;命題q:“空間兩條直線為異面直線的充要條件是它們不同在任何一個(gè)平面內(nèi)”.則( 。
分析:由對(duì)數(shù)的運(yùn)算性質(zhì)可判斷命題p的真假,根據(jù)異面直線的定義可知命題q的真假,從而根據(jù)復(fù)合命題的真假關(guān)系即可判斷
解答:解:P:“對(duì)任意a,b∈N*,都有l(wèi)g(a+b)≠lga+lgb”為假命題,例如a=b=2時(shí),等式成立;
命題q:“空間兩條直線為異面直線的充要條件是它們不同在任何一個(gè)平面”為真命題
∴“p∧q”為假命題,“p∨q”為真命題,“(¬p)∧q”為真命題,“p∨(¬q)”為假命題
故選C
點(diǎn)評(píng):本題主要考查了命題的真假關(guān)系的判斷及復(fù)合命題的真假關(guān)系的應(yīng)用,屬于基礎(chǔ)試題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳二模)已知平面向量
a
b
滿足條件
a
+
b
=(0,1),
a
-
b
=(-1,2),則
a
b
=
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳二模)設(shè)a,b,c,d∈R,若a,1,b成等比數(shù)列,且c,1,d 成等差數(shù)列,則下列不等式恒成立的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳二模)已知二次函數(shù)f(x)的最小值為-4,且關(guān)于x的不等式f(x)≤0的解集為{x|-1≤x≤3,x∈R}.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)g(x)=
f(x)x
-4lnx
的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳二模)曲線y=(
1
2
)
x
在x=0點(diǎn)處的切線方程是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳二模)執(zhí)行圖中程序框圖表示的算法,若輸入m=5533,n=2012,則輸出d=
503
503
(注:框圖中的賦值符號(hào)“=”也可以寫成“←”或“:=”)

查看答案和解析>>

同步練習(xí)冊(cè)答案